EXPRESSION OF THE ALPHA-GALACTOSIDASE FROM CYAMOPSIS-TETRAGONOLOBA (GUAR) BY HANSENULA-POLYMORPHA

被引:39
作者
FELLINGER, AJ [1 ]
VERBAKEL, JMA [1 ]
VEALE, RA [1 ]
SUDBERY, PE [1 ]
BOM, IJ [1 ]
OVERBEEKE, N [1 ]
VERRIPS, CT [1 ]
机构
[1] UNIV SHEFFIELD, SHEFFIELD S10 2TN, S YORKSHIRE, ENGLAND
关键词
SECRETION; METHYLOTROPHIC YEAST; GLYCOSYLATION; METHANOL OXIDASE;
D O I
10.1002/yea.320070505
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The methylotrophic yeast Hansenula polymorpha, a host organism for the production of heterologous proteins, has been applied to produce the alpha-galactosidase from the plant Cyamopsis tetragonoloba (guar). The yeast/Escherichia coli shuttle expression vector used is based on the origin of replication of the endogenous 2-mu-m plasmid of Saccharomyces cerevisiae and the LEU2 gene of S. cerevisiae for selection in H. polymorpha. In the expression vector, the alpha-galactosidase is controlled by the methanol-regulated promoter from the methanol oxidase gene, MOX, of H. polymorpha. The signal sequence of SUC2 (invertase) from the yeast S. cerevisiae, was used to ensure secretion of the alpha-galactosidase enzyme. After transformation and stabilization, the expression vector was stably integrated in the genome. The active alpha-galactosidase enzyme was efficiently secreted (> 85%) and after methanol induction, the expression level was 42 mg/l. Amino-terminal sequencing of the purified alpha-galactosidase enzyme synthesized by H. polymorpha showed that the S. cerevisiae invertase signal sequence was correctly processed by H. polymorpha. The secreted alpha-galactosidase was glycosylated and had a sugar content of 9.5%. The specific activity of the alpha-galactosidase produced by H. polymorpha was 38 U mg-1 compared to 100 U mg-1 for the guar alpha-galactosidase. Deglycosylation of the H. polymorpha alpha-galactosidase restored the specific activity completely.
引用
收藏
页码:463 / 473
页数:11
相关论文
共 34 条
[1]   NUCLEOTIDE-SEQUENCE OF YEAST LEU2 SHOWS 5'-NONCODING REGION HAS SEQUENCES COGNATE TO LEUCINE [J].
ANDREADIS, A ;
HSU, YP ;
KOHLHAW, GB ;
SCHIMMEL, P .
CELL, 1982, 31 (02) :319-325
[2]   BUFFER GRADIENT GELS AND S-35 LABEL AS AN AID TO RAPID DNA-SEQUENCE DETERMINATION [J].
BIGGIN, MD ;
GIBSON, TJ ;
HONG, GF .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA-BIOLOGICAL SCIENCES, 1983, 80 (13) :3963-3965
[3]  
BIRNBOIM HC, 1979, NUCLEIC ACIDS RES, V7, P1513
[4]   HUMAN ALPHA-GALACTOSIDASE-A - NUCLEOTIDE-SEQUENCE OF A CDNA CLONE ENCODING THE MATURE ENZYME [J].
BISHOP, DF ;
CALHOUN, DH ;
BERNSTEIN, HS ;
HANTZOPOULOS, P ;
QUINN, M ;
DESNICK, RJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1986, 83 (13) :4859-4863
[5]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[6]  
BROACH JR, 1979, GENE, V8, P121, DOI 10.1016/0378-1119(79)90012-X
[7]   SUPERCOIL SEQUENCING - A FAST AND SIMPLE METHOD FOR SEQUENCING PLASMID DNA [J].
CHEN, EY ;
SEEBURG, PH .
DNA-A JOURNAL OF MOLECULAR & CELLULAR BIOLOGY, 1985, 4 (02) :165-170
[8]   HIGH-LEVEL EXPRESSION AND EFFICIENT ASSEMBLY OF HEPATITIS-B SURFACE-ANTIGEN IN THE METHYLOTROPHIC YEAST, PICHIA-PASTORIS [J].
CREGG, JM ;
TSCHOPP, JF ;
STILLMAN, C ;
SIEGEL, R ;
AKONG, M ;
CRAIG, WS ;
BUCKHOLZ, RG ;
MADDEN, KR ;
KELLARIS, PA ;
DAVIS, GR ;
SMILEY, BL ;
CRUZE, J ;
TORREGROSSA, R ;
VELICELEBI, G ;
THILL, GP .
BIO-TECHNOLOGY, 1987, 5 (05) :479-485
[9]   COLORIMETRIC METHOD FOR DETERMINATION OF SUGARS AND RELATED SUBSTANCES [J].
DUBOIS, M ;
GILLES, KA ;
HAMILTON, JK ;
REBERS, PA ;
SMITH, F .
ANALYTICAL CHEMISTRY, 1956, 28 (03) :350-356
[10]   A PROTEIN SEQUENATOR [J].
EDMAN, P ;
BEGG, G .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1967, 1 (01) :80-&