PROGRAMS FOR COMPUTING LOGARITHM OF GAMMA FUNCTION, AND DIGAMMA FUNCTION, FOR COMPLEX ARGUMENT

被引:23
作者
KOLBIG, KS [1 ]
机构
[1] CERN, GENEVA, SWITZERLAND
关键词
D O I
10.1016/0010-4655(72)90012-4
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
引用
收藏
页码:221 / 226
页数:6
相关论文
共 26 条
[1]  
ABRAMOWITZ M, 1965, NBS55 APPL MATH SER
[2]  
CLENSHAW CW, 1963, NUMER MATH, V4, P403
[3]   CHEBYSHEV APPROXIMATIONS FOR NATURAL LOGARITHM OF GAMMA FUNCTION [J].
CODY, WJ ;
HILLSTRO.KE .
MATHEMATICS OF COMPUTATION, 1967, 21 (98) :198-&
[4]  
CYVIN SJ, 1964, COMMUN ACM, V7, P295, DOI 10.1145/364099.364315
[5]  
DEMEDEIROS AT, 1969, COMMUN ACM, V12, P213, DOI 10.1145/362912.362928
[6]  
FROBERG CE, 1961, NORD TIDSKR INFORM, V1, P256
[7]  
HART JF, 1968, COMPUTER APPROXIMATI
[8]   GENERALIZED VENEZIANO MODEL [J].
HONGMO, C .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1970, 318 (1534) :379-&
[9]   INFINITE SERIES REPRESENTATION OF N-POINT FUNCTION IN GENERALIZED VENEZIANO MODEL [J].
HOPKINSON, JF ;
PLAHTE, E .
PHYSICS LETTERS B, 1969, B 28 (07) :489-+
[10]   COMPLEX GAMMA FUNCTION WITH ERROR CONTROL [J].
KUKI, H .
COMMUNICATIONS OF THE ACM, 1972, 15 (04) :271-&