STUDY OF CUBIC ANISOTROPY IN 3 DIMENSIONS BY THE SCALING-FIELD METHOD

被引:15
作者
DOMANY, E
RIEDEL, EK
机构
[1] Department of Physics, University of Washington, Seattle
关键词
D O I
10.1063/1.327175
中图分类号
O59 [应用物理学];
学科分类号
摘要
Scaling-field equations for the hypercubic N-vector model are derived from Wilson's exact renormalization-group equation and applied to the determination of NC*, the instability point of the isotropic fixed point as a function of N, and to the estimation of the critical point exponents associated with the isotropic, cubic, and decoupled Ising fixed points in hypercubic systems of three spatial dimensions.
引用
收藏
页码:1804 / 1806
页数:3
相关论文
共 21 条
[1]   CRITICAL BEHAVIOR OF ANISOTROPIC CUBIC SYSTEMS [J].
AHARONY, A .
PHYSICAL REVIEW B, 1973, 8 (09) :4270-4273
[2]   CRITICAL BEHAVIOR OF ANISOTROPIC CUBIC SYSTEMS IN LIMIT OF INFINITE SPIN DIMENSIONALITY [J].
AHARONY, A .
PHYSICAL REVIEW LETTERS, 1973, 31 (25) :1494-1497
[3]  
Aharony A., 1976, Phase Transitions and Critical Phenomena, V6, P357
[4]   CRITICAL PROPERTIES OF MANY-COMPONENT SYSTEMS [J].
EMERY, VJ .
PHYSICAL REVIEW B, 1975, 11 (01) :239-247
[5]  
FISHER MA, UNPUBLISHED
[6]   RENORMALIZATION OF CRITICAL EXPONENTS BY HIDDEN VARIABLES [J].
FISHER, ME .
PHYSICAL REVIEW, 1968, 176 (01) :257-&
[7]   RENORMALIZATION GROUP IN THEORY OF CRITICAL BEHAVIOR [J].
FISHER, ME .
REVIEWS OF MODERN PHYSICS, 1974, 46 (04) :597-616
[8]   RENORMALIZATION-GROUP CALCULATION OF CRITICAL EXPONENTS IN 3 DIMENSIONS [J].
GOLNER, GR ;
RIEDEL, EK .
PHYSICAL REVIEW LETTERS, 1975, 34 (14) :856-859
[9]   SOLUTION OF EXACT WILSON RENORMALIZATION-GROUP EQUATION BY SCALING-FIELD METHOD [J].
GOLNER, GR ;
NEWMAN, KE ;
RIEDEL, EK .
JOURNAL OF APPLIED PHYSICS, 1978, 49 (03) :1359-1359
[10]   SCALING-FIELD APPROACH TO ISOTROPIC N-VECTOR MODEL IN 3 DIMENSIONS [J].
GOLNER, GR ;
RIEDEL, EK .
PHYSICS LETTERS A, 1976, 58 (01) :11-14