Chance-constrained model predictive control

被引:212
作者
Schwarm, AT
Nikolaou, M [1 ]
机构
[1] Univ Houston, Dept Chem Engn, Houston, TX 77204 USA
[2] Texas A&M Univ, Dept Chem Engn, College Stn, TX 77843 USA
关键词
D O I
10.1002/aic.690450811
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
This work focuses on robustness of model-predictive control with respect to satisfaction of process output constraints. A method of improving such robustness is presented. The method relies on formulating output constraints as chance constraints using the uncertainty description of the process model. The resulting on-line optimization problem is convex. The proposed approach is illustrated through a simulation case study on a high-purity distillation column. Suggestions for further improvements are made.
引用
收藏
页码:1743 / 1752
页数:10
相关论文
共 15 条
[1]  
BADGWELL TA, 1997, ADCHEM 97 BANFF CAN
[2]  
Birge J. R., 1997, INTRO STOCHASTIC PRO
[3]   DETERMINISTIC EQUIVALENTS FOR OPTIMIZING AND SATISFICING UNDER CHANCE CONSTRAINTS [J].
CHARNES, A ;
COOPER, WW .
OPERATIONS RESEARCH, 1963, 11 (01) :18-39
[4]   A quasi-infinite horizon nonlinear model predictive control scheme with guaranteed stability [J].
Chen, H ;
Allgower, F .
AUTOMATICA, 1998, 34 (10) :1205-1217
[5]   Stabilizing receding-horizon control of nonlinear time-varying systems [J].
De Nicolao, G ;
Magni, L ;
Scattolini, R .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1998, 43 (07) :1030-1036
[6]   ROBUST STABILITY ANALYSIS OF CONSTRAINED L(1)-NORM MODEL-PREDICTIVE CONTROL [J].
GENCELI, H ;
NIKOLAOU, M .
AICHE JOURNAL, 1993, 39 (12) :1954-1965
[7]  
Horst R., 1990, GLOBAL OPTIMIZATION
[8]   Worst-case formulations of model predictive control for systems with bounded parameters [J].
Lee, JH ;
Yu, ZH .
AUTOMATICA, 1997, 33 (05) :763-781
[9]   ROBUST RECEDING HORIZON CONTROL OF CONSTRAINED NONLINEAR-SYSTEMS [J].
MICHALSKA, H ;
MAYNE, DQ .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1993, 38 (11) :1623-1633
[10]  
Morari M., 1989, ROBUST PROCESS CONTR