MTH POWER OF AN N X N MATRIC AND ITS CONNECTION WITH GENERALIZED LUCAS POLYNOMIALS

被引:13
作者
BARAKAT, R
BAUMANN, E
机构
[1] Division of Engineering and Applied Physics, Harvard University, Cambridge, MA
[2] Itek Corporation, Lexington, MA
关键词
D O I
10.1063/1.1664992
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Mth power of an N × N matrix is expressed via the Cayley-Hamilton theorem as a linear combination of the lower powers of the matrix. The polynomial coefficients of the lower powers of the matrix are expressed in terms of polynomials in N variables, termed the generalized Lucas polynomials. The independent variables in the generalized Lucas polynomials are the traces of the lower powers of the matrix.
引用
收藏
页码:1474 / &
相关论文
共 10 条
  • [1] Barakat R., 1964, J MATH PHYS, V43, P332
  • [2] Basin S., 1964, MATH MAG, V37, P83, DOI [10.1080/0025570X.1964.11975488, DOI 10.1080/0025570X.1964.11975488]
  • [3] GANTHMACHER FR, 1959, THEORY MATRICES, V1
  • [4] GANTHMACHER FR, 1959, THEORY MATRICES, V2
  • [5] HERPIN A, 1947, CR HEBD ACAD SCI, V225, P17
  • [6] Jacobsthal E., 1919, SITZUNGSBERIOHTE BER, V17, P43
  • [7] Lanczos C., 1956, APPLIED ANALYSIS
  • [8] Lucas E, 1891, THEORIE DES NOMBRES
  • [9] ON HYPERGEOMETRIC FUNCTIONS IN ITERATED NETWORKS
    MOWERY, VO
    [J]. IEEE TRANSACTIONS ON CIRCUIT THEORY, 1964, CT11 (02): : 232 - &
  • [10] Weyl H., 1946, CLASSICAL GROUPS