ASYMPTOTIC ESTIMATION AND HYPOTHESIS TESTING RESULTS FOR VECTOR LINEAR TIME-SERIES MODELS

被引:37
作者
KOHN, R
机构
关键词
D O I
10.2307/1914144
中图分类号
F [经济];
学科分类号
02 ;
摘要
For a general vector linear time series model the strong consistency and symptotic normality of parameter estimates obtained by maximizing a particular time domain approximation to a Gaussian likelihood is proved. To solve the normal equations a constrained Guass-Newton iteration is suggested. -Author
引用
收藏
页码:1005 / 1030
页数:26
相关论文
共 28 条
[1]   MAXIMUM LIKELIHOOD IDENTIFICATION OF GAUSSIAN AUTOREGRESSIVE MOVING AVERAGE MODELS [J].
AKAIKE, H .
BIOMETRIKA, 1973, 60 (02) :255-265
[2]  
DHRYMES PJ, 1974, J ECONOMETRICS, V2, P247
[3]  
DHRYMES PJ, 1976, INT ECON REV, V17, P362
[4]   VECTOR LINEAR TIME SERIES MODELS [J].
DUNSMUIR, W ;
HANNAN, EJ .
ADVANCES IN APPLIED PROBABILITY, 1976, 8 (02) :339-364
[6]  
Feige EL, 1967, AM ECON REV, V57, P462
[7]   IDENTIFICATION PROBLEM FOR MULTIPLE EQUATION SYSTEMS WITH MOVING AVERAGE ERRORS [J].
HANNAN, EJ .
ECONOMETRICA, 1971, 39 (05) :751-&
[8]   IDENTIFICATION OF VECTOR MIXED AUTOREGRESSIVE-MOVING AVERAGE SYSTEMS [J].
HANNAN, EJ .
BIOMETRIKA, 1969, 56 (01) :223-&
[9]  
HANNAN EJ, 1972, ANN MATH STATISTICS, V4, P1258
[10]  
Hannan J., 2013, TECH NOTE, V43153