AN ASYMPTOTIC APPROACH TO THE CONNECTION PROBLEM FOR THE 1ST AND THE 2ND PAINLEVE EQUATIONS

被引:41
作者
JOSHI, N [1 ]
KRUSKAL, MD [1 ]
机构
[1] PRINCETON UNIV,PROGRAM APPL & COMPUTAT MATH,PRINCETON,NJ 08544
关键词
D O I
10.1016/0375-9601(88)90415-X
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
引用
收藏
页码:129 / 137
页数:9
相关论文
共 15 条
  • [1] NON-LINEAR EVOLUTION EQUATIONS AND ORDINARY DIFFERENTIAL-EQUATIONS OF PAINLEVE TYPE
    ABLOWITZ, MJ
    RAMANI, A
    SEGUR, H
    [J]. LETTERE AL NUOVO CIMENTO, 1978, 23 (09): : 333 - 338
  • [2] A CONNECTION BETWEEN NON-LINEAR EVOLUTION-EQUATIONS AND ORDINARY DIFFERENTIAL-EQUATIONS OF P-TYPE .1.
    ABLOWITZ, MJ
    RAMANI, A
    SEGUR, H
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1980, 21 (04) : 715 - 721
  • [3] Bender CM., 1978, ADV MATH METHODS SCI
  • [4] Boutroux P., 1914, ANN SCI ECOLE NORM S, V31, P99, DOI [10.24033/asens.672, DOI 10.24033/ASENS.672]
  • [5] SOME EXACT RESULTS FOR THE 2-POINT FUNCTION OF AN INTEGRABLE QUANTUM FIELD-THEORY
    CREAMER, DB
    THACKER, HB
    WILKINSON, D
    [J]. PHYSICAL REVIEW D, 1981, 23 (12): : 3081 - 3084
  • [6] A BOUNDARY-VALUE PROBLEM ASSOCIATED WITH THE 2ND PAINLEVE TRANSCENDENT AND THE KORTEWEG-DE VRIES EQUATION
    HASTINGS, SP
    MCLEOD, JB
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1980, 73 (01) : 31 - 51
  • [7] Ince E. L., 1956, ORDINARY DIFFERENTIA
  • [8] Jimbo M., 1980, Physica D, V1D, P80, DOI 10.1016/0167-2789(80)90006-8
  • [9] JIMBO M, RIMS370 KYOT U REP
  • [10] JOSHI N, 1987, THESIS PRINCETON U