Three facts of time perception are described based upon a temporal generalization task for rats (the peak procedure) in which food reinforcement is derivered on half the trials following the first lever-press response after some fixed interval after signal onset. (1) The mean response rate as a function of time is a smooth, slightly asymmetric, function with a maximum near the time of reinforcement; (2) the response rate on individual trials is characterized by an abrupt change from a state of low responding to a state of high responding and finally another state of low responding (break-run-break pattern); and (3) the mean response rate in 12-s and 20-s peak procedures is similar when plotted against time relative to the time of reinforcement (superposition). An information-processing version of scalar timing theory is described and compared to an alternative connectionist version of scalar timing theory that involves multiple oscillators and an autoassociation network. Psychological, mathematical and biological descriptions of the two versions are described and some possible extensions of the connectionist version are proposed to deal with perception of number, rate, and spatial orientation. © 1990.