RANDOM-WALK ON THE INFINITE CLUSTER OF THE PERCOLATION MODEL

被引:60
作者
GRIMMETT, GR
KESTEN, H
ZHANG, Y
机构
[1] CORNELL UNIV,DEPT MATH,ITHACA,NY 14853
[2] UNIV COLORADO,DEPT MATH,BOULDER,CO 80309
关键词
Mathematics Subject Classification (1991): 60J15; 60K35; 82B43; 82D30;
D O I
10.1007/BF01195881
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider random walk on the infinite cluster of bond percolation on Z(d). We show that, in the supercritical regime when d greater-than-or-equal-to 3, this random walk is a.s. transient. This conclusion is achieved by considering the infinite percolation cluster as a random electrical network in which each open edge has unit resistance. It is proved that the effective resistance of this network between a nominated point and the points at infinity is almost surely finite.
引用
收藏
页码:33 / 44
页数:12
相关论文
共 12 条
[1]   AN INVARIANCE-PRINCIPLE FOR REVERSIBLE MARKOV-PROCESSES - APPLICATIONS TO RANDOM MOTIONS IN RANDOM-ENVIRONMENTS [J].
DEMASI, A ;
FERRARI, PA ;
GOLDSTEIN, S ;
WICK, WD .
JOURNAL OF STATISTICAL PHYSICS, 1989, 55 (3-4) :787-855
[2]  
DEMASI A, 1985, CONT MATH, V41, P71
[3]  
Doyle P. G., 1984, CARUS MATH MONOGR, V22
[4]  
Grimmett G., 1989, PERCOLATION
[5]   THE SUPERCRITICAL PHASE OF PERCOLATION IS WELL BEHAVED [J].
GRIMMETT, GR ;
MARSTRAND, JM .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1990, 430 (1879) :439-457
[6]   THE PROBABILITY OF A LARGE FINITE CLUSTER IN SUPERCRITICAL BERNOULLI PERCOLATION [J].
KESTEN, H ;
ZHANG, Y .
ANNALS OF PROBABILITY, 1990, 18 (02) :537-555
[7]  
KESTEN H., 1982, PERCOLATION THEORY M
[8]   A SIMPLE CRITERION FOR TRANSIENCE OF A REVERSIBLE MARKOV-CHAIN [J].
LYONS, T .
ANNALS OF PROBABILITY, 1983, 11 (02) :393-402
[9]  
Nash-Williams C. S. J. A, 1959, P CAMBRIDGE PHILOS S, V55, P181, DOI DOI 10.1017/S0305004100033879
[10]   EFFECTIVE CONDUCTIVITY OF RANDOM HOMOGENEOUS SETS [J].
ZHIKOV, VV .
MATHEMATICAL NOTES, 1989, 45 (3-4) :288-296