THE ROLE OF CRITICAL EXPONENTS IN BLOWUP THEOREMS

被引:695
作者
LEVINE, HA
机构
[1] Iowa State Univ, Ames, IA
关键词
D O I
10.1137/1032046
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article various extensions of an old result of Fujita are considered for the initial value problem for the reaction-diffusion equation ut = Δu + uP in RN with p > 1 and nonnegative initial values. Fujita showed that if 1 < p < 1 + 2/N, then the initial value problem had no nontrivial global solutions while if p > 1 + 2/N, there were nontrivial global solutions. This paper discusses similar results for other geometries and other equations including a nonlinear wave equation and a nonlinear Schrodinger equation.
引用
收藏
页码:262 / 288
页数:27
相关论文
共 142 条
[1]  
AMANN H, 1986, T AM MATH SOC, V293, P191
[2]   PARABOLIC EVOLUTION-EQUATIONS AND NONLINEAR BOUNDARY-CONDITIONS [J].
AMANN, H .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1988, 72 (02) :201-269
[3]   SEMIGROUPS AND NONLINEAR EVOLUTION-EQUATIONS [J].
AMANN, H .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1986, 84 :3-32
[4]  
AMANN H, 1985, J REINE ANGEW MATH, V366, P47
[5]  
Aris R, 1975, MATH THEORY DIFFUSIO, V1
[6]  
Aris R., 1975, MATH THEORY DIFFUSIO, VI-II
[7]   MULTIDIMENSIONAL NON-LINEAR DIFFUSION ARISING IN POPULATION-GENETICS [J].
ARONSON, DG ;
WEINBERGER, HF .
ADVANCES IN MATHEMATICS, 1978, 30 (01) :33-76
[9]  
BANDLE C, 1989, T AM MATH SOC, V655, P595
[10]  
BANDLE C, POSITIVE SOLUTIONS E