NEW EIGENSTATES OF THE 1-DIMENSIONAL HUBBARD-MODEL

被引:61
作者
ESSLER, FHL
KOREPIN, VE
SCHOUTENS, K
机构
[1] Institute for Theoretical Physics, State University of New York at Stony Brook, Stony Brook
基金
美国国家科学基金会;
关键词
D O I
10.1016/0550-3213(92)90366-J
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
Carrying out a program proposed by C.N. Yang, we prove that all "regular" (as defined in the paper) Bethe-Ansatz states of the 1-dimensional Hubbard model on a lattice of finite length L are lowest-weight vectors of an SO(4) algebra. Thus new eigenstates can be obtained by acting with the SO(4) raising operators on the Bethe-Ansatz states. In a following publication we will show that the SO(4) structure in combination with the Bethe Ansatz leads to a complete set of eigenfunctions for the 1-dimensional Hubbard model (asymptotically for large but finite lattice lengths L).
引用
收藏
页码:559 / 596
页数:38
相关论文
共 16 条
[1]  
AFFLECK I, 1989, NATO ADV STUDY I PHY
[2]   COMPLETE SOLUTION OF THE ONE-DIMENSIONAL HUBBARD-MODEL [J].
ESSLER, FHL ;
KOREPIN, VE ;
SCHOUTENS, K .
PHYSICAL REVIEW LETTERS, 1991, 67 (27) :3848-3851
[3]  
ESSLER FHL, IN PRESS NUCL PHYS B
[4]  
Faddeev L D, 1981, ZAP NAUCHN SEMIN LOM, V109, P134
[5]   WHAT IS THE SPIN OF A SPIN-WAVE [J].
FADDEEV, LD ;
TAKHTAJAN, LA .
PHYSICS LETTERS A, 1981, 85 (6-7) :375-377
[6]  
FADDEEV LD, 1985, LECT NOTES PHYS, V242, P158
[7]  
IZERGIN AG, 1987, J PHYSICS A, V20, P47
[8]   ABSENCE OF MOTT TRANSITION IN AN EXACT SOLUTION OF SHORT-RANGE 1-BAND MODEL IN 1 DIMENSION [J].
LIEB, EH ;
WU, FY .
PHYSICAL REVIEW LETTERS, 1968, 20 (25) :1445-+
[9]   SPIN AND PAIRING ALGEBRAS AND ODLRO IN A HUBBARD-MODEL [J].
PERNICI, M .
EUROPHYSICS LETTERS, 1990, 12 (01) :75-80
[10]  
SHASTRY BS, 1988, J STAT PHYS, V50, P57, DOI 10.1007/BF01022987