We studied the degradation of pentachlorophenol (PCP) under methanogenic and sulfate-reducing conditions with an anaerobic mixed culture derived from sewage sludge. The consortium degraded PCP via 2,3,4,5-tetrachlorophenol, 3,4,5-trichlorophenol, and 3,5-dichlorophenol and eventually accumulated 3-chlorophenol. Dechlorination of PCP and metabolites was inhibited in the presence of sulfate, thiosulfate, and sulfite. A decrease in the rate of PCP transformation was noted when the endogenous dissolved H-2 was depleted below 0.11-mu-M in sulfate-reducing cultures. The effect on dechlorination observed with sulfate could be relieved by addition of molybdate, a competitive inhibitor of sulfate reduction. Addition of H-2 reduced the inhibition observed with sulfuroxy anions. The inhibitory effect of sulfuroxy anions may be due to a competition for H2 between sulfate reduction and dechlorination. When cultured under methanogenic conditions, the consortium degraded several chlorinated and brominated phenols.