THE FREE COMPRESSIBLE VISCOUS VORTEX

被引:53
作者
COLONIUS, T
LELE, SK
MOIN, P
机构
[1] STANFORD UNIV,DEPT AERONAUT & ASTRONAUT,STANFORD,CA 94305
[2] NASA,AMES RES CTR,MOFFETT FIELD,CA 94035
关键词
D O I
10.1017/S0022112091000708
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The effects of compressibility on free (unsteady) viscous heat-conducting vortices are investigated. Analytical solutions are found in the limit of large, but finite, Reynolds number, and small, but finite, Mach number. The analysis shows that the spreading of the vortex causes a radial flow. This flow is given by the solution of an ordinary differential equation (valid for any Mach number), which gives the dependence of the radial velocity on the tangential velocity, density, and temperature profiles of the vortex; estimates of the radial velocity found by solving this equation are found to be in good agreement with numerical solutions of the full equations. The experiments of Mandella (1987) also report a radial flow in the vortex, but their estimates are much larger than the analytical predictions, and it is found that the flow inferred from the experiments violates the Second Law of Thermodynamics for two-dimensional axisymmetric flow. It is speculated that three-dimensionality is the cause of this discrepancy. To obtain detailed analytical solutions, the equations for the viscous evolution are expanded in powers of Mach number, M. Solutions valid to O(M2), are discussed for vortices with finite circulation. Two specific initial conditions - vortices with initially uniform entropy and with initially uniform density - are analysed in detail. It is shown that swirling axisymmetric compressible flows generate negative radial velocities far from the vortex core owing to viscous effects, regardless of the initial distributions of vorticity, density and entropy.
引用
收藏
页码:45 / 73
页数:29
相关论文
共 22 条
[1]  
Abramowitz M.., 1972, HDB MATH FUNCTIONS
[2]   VISCOUS COMPRESSIBLE HEAT CONDUCTING SPIRALING FLOW [J].
BELLAMYKNIGHTS, PG .
QUARTERLY JOURNAL OF MECHANICS AND APPLIED MATHEMATICS, 1980, 33 (AUG) :321-336
[3]  
BERSHADER D, 1988, 16TH P INT S SHOCK T, P5
[4]  
COLONIUS T, 1991, AIAA910494 PAP
[5]  
DENEUFVILLE A, 1957, 5TH P MIDW C FLUID M, P365
[6]  
Incropera F., 1985, INTRO HEAT TRANSFER
[7]  
LELE SK, UNPUB J COMPUT PHYS
[8]  
LELE SK, 1990, CTR107 STANF U MAN
[9]   A VORTEX IN AN INFINITE VISCOUS FLUID [J].
LONG, RR .
JOURNAL OF FLUID MECHANICS, 1961, 11 (04) :611-&
[10]   THE COMPRESSIBLE VISCOUS HEAT-CONDUCTING VORTEX [J].
MACK, LM .
JOURNAL OF FLUID MECHANICS, 1960, 8 (02) :284-292