DISTRIBUTED ESTIMATION AND QUANTIZATION

被引:146
作者
GUBNER, JA
机构
[1] Department of Electrical and Computer Engineering, University of Wisconsin, Madison, WI, 53706–1691
关键词
NONLINEAR ESTIMATION; DISTRIBUTED ESTIMATION; SENSOR FUSION; LLOYD-MAX ALGORITHM;
D O I
10.1109/18.243470
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
An algorithm is developed for the design of a nonlinear, n-sensor, distributed estimation system subject to communication and computation constraints. The algorithm uses only bivariate probability distributions and yields locally optimal estimators that satisfy the required system constraints. It is shown that the algorithm is a generalization of the classical Lloyd-Max results.
引用
收藏
页码:1456 / 1459
页数:4
相关论文
共 11 条
[1]   ON OPTIMAL QUANTIZATION OF NOISY SOURCES [J].
AYANOGLU, E .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1990, 36 (06) :1450-1452
[2]   A UNIFIED APPROACH FOR ENCODING CLEAN AND NOISY SOURCES BY MEANS OF WAVEFORM AND AUTOREGRESSIVE MODEL VECTOR QUANTIZATION [J].
EPHRAIM, Y ;
GRAY, RM .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1988, 34 (04) :826-834
[3]   ENCODING OF CORRELATED OBSERVATIONS [J].
FLYNN, TJ ;
GRAY, RM .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1987, 33 (06) :773-787
[4]  
GUBNER JA, 1990, 1990 IEEE INT S INF, P32
[5]  
LAM WM, 1989, 23RD P ANN C INF SCI
[6]  
LAM WM, IN PRESS IEEE T COMM
[7]  
LLOYD SP, 1982, IEEE T INFORM THEORY, V28, P129, DOI 10.1109/TIT.1982.1056489
[8]  
LLOYD SP, 1957, UNPUB COMMUNICA 0731
[9]   QUANTIZING FOR MINIMUM DISTORTION [J].
MAX, J .
IRE TRANSACTIONS ON INFORMATION THEORY, 1960, 6 (01) :7-12
[10]  
WEHBE WH, 1992, UNPUB QUANTIZATION D