A MODEL RECOGNITION APPROACH TO THE PREDICTION OF ALL-HELICAL MEMBRANE-PROTEIN STRUCTURE AND TOPOLOGY

被引:677
作者
JONES, DT [1 ]
TAYLOR, WR [1 ]
THORTON, JM [1 ]
机构
[1] NATL INST MED RES, MATH BIOL LAB, LONDON NW7 1AA, ENGLAND
基金
英国惠康基金;
关键词
D O I
10.1021/bi00176a037
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
This paper describes a new method for the prediction of the secondary structure and topology of integral membrane proteins based on the recognition of topological models. The method employs a set of statistical tables (log likelihoods) compiled from well-characterized membrane protein data, and a novel dynamic programming algorithm to recognize membrane topology models by expectation maximization. The statistical tables show definite biases toward certain amino acid species on the inside, middle, and outside of a cellular membrane. Using a set of 83 integral membrane protein sequences taken from a variety of bacterial, plant, and animal species, and a strict jackknifing procedure, where each protein (along with any detectable homologues) is removed from the training set used to calculate the tables before prediction, the method successfully predicted 64 of the 83 topologies, and of the 37 complex multispanning topologies 34 were predicted correctly.
引用
收藏
页码:3038 / 3049
页数:12
相关论文
共 24 条
[1]  
ARGOS P, 1982, EUR J BIOCHEM, V128, P565
[2]   THE SWISS-PROT PROTEIN-SEQUENCE DATA-BANK [J].
BAIROCH, A ;
BOECKMANN, B .
NUCLEIC ACIDS RESEARCH, 1991, 19 :2247-2248
[3]   A METHOD TO IDENTIFY PROTEIN SEQUENCES THAT FOLD INTO A KNOWN 3-DIMENSIONAL STRUCTURE [J].
BOWIE, JU ;
LUTHY, R ;
EISENBERG, D .
SCIENCE, 1991, 253 (5016) :164-170
[4]   HYDROPHOBICITY SCALES AND COMPUTATIONAL TECHNIQUES FOR DETECTING AMPHIPATHIC STRUCTURES IN PROTEINS [J].
CORNETTE, JL ;
CEASE, KB ;
MARGALIT, H ;
SPOUGE, JL ;
BERZOFSKY, JA ;
DELISI, C .
JOURNAL OF MOLECULAR BIOLOGY, 1987, 195 (03) :659-685
[5]   STRUCTURE OF THE PROTEIN SUBUNITS IN THE PHOTOSYNTHETIC REACTION CENTER OF RHODOPSEUDOMONAS-VIRIDIS AT 3A RESOLUTION [J].
DEISENHOFER, J ;
EPP, O ;
MIKI, K ;
HUBER, R ;
MICHEL, H .
NATURE, 1985, 318 (6047) :618-624
[6]   QUADRATIC MINIMIZATION OF PREDICTORS FOR PROTEIN SECONDARY STRUCTURE - APPLICATION TO TRANSMEMBRANE ALPHA-HELICES [J].
EDELMAN, J .
JOURNAL OF MOLECULAR BIOLOGY, 1993, 232 (01) :165-191
[7]   ANALYSIS OF MEMBRANE AND SURFACE PROTEIN SEQUENCES WITH THE HYDROPHOBIC MOMENT PLOT [J].
EISENBERG, D ;
SCHWARZ, E ;
KOMAROMY, M ;
WALL, R .
JOURNAL OF MOLECULAR BIOLOGY, 1984, 179 (01) :125-142
[8]   IDENTIFYING NONPOLAR TRANSBILAYER HELICES IN AMINO-ACID-SEQUENCES OF MEMBRANE-PROTEINS [J].
ENGELMAN, DM ;
STEITZ, TA ;
GOLDMAN, A .
ANNUAL REVIEW OF BIOPHYSICS AND BIOPHYSICAL CHEMISTRY, 1986, 15 :321-353
[9]   ANALYSIS OF ACCURACY AND IMPLICATIONS OF SIMPLE METHODS FOR PREDICTING SECONDARY STRUCTURE OF GLOBULAR PROTEINS [J].
GARNIER, J ;
OSGUTHORPE, DJ ;
ROBSON, B .
JOURNAL OF MOLECULAR BIOLOGY, 1978, 120 (01) :97-120
[10]   AMINO-ACID DIFFERENCE FORMULA TO HELP EXPLAIN PROTEIN EVOLUTION [J].
GRANTHAM, R .
SCIENCE, 1974, 185 (4154) :862-864