COMPUTING OPTIMAL TRIANGULATIONS USING SIMULATED ANNEALING

被引:42
作者
SCHUMAKER, LL
机构
[1] Department of Mathematics, Vanderbilt University, Nashville
基金
俄罗斯科学基金会;
关键词
D O I
10.1016/0167-8396(93)90045-5
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Triangulations play an important role in approximation, CAGD, numerical analysis, and elsewhere. In this paper we are concerned with the problem of constructing triangulations which are optimal in some sense. Our aim is to show how simulated annealing can be used to search for globally optimal triangulations for a wide class of optimality criteria. We also give several examples to illustrate its performance on a variety of problems of interest in CAGD and surface fitting.
引用
收藏
页码:329 / 345
页数:17
相关论文
共 19 条
[1]   3-DIMENSIONAL AND 4-DIMENSIONAL SURFACES [J].
BARNHILL, RE ;
LITTLE, FF .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1984, 14 (01) :77-102
[2]  
BASZENSKI G, 1991, CURVES SURFACES, P27
[3]   DATA DEPENDENT TRIANGULATIONS FOR PIECEWISE LINEAR INTERPOLATION [J].
DYN, N ;
LEVIN, D ;
RIPPA, S .
IMA JOURNAL OF NUMERICAL ANALYSIS, 1990, 10 (01) :137-154
[4]  
DYN N, 1990, ALGORITHMS APPROXIMA, V2, P185
[5]  
DYN N, 1992, TRANSFORMING TRIANGU
[6]   C-1 SURFACE INTERPOLATION FOR SCATTERED DATA ON A SPHERE [J].
LAWSON, CL .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1984, 14 (01) :177-202
[7]  
LAWSON CL, 1985, JPL8542 CAL TECH
[8]  
Lawson CL, 1977, MATH SOFTWARE, P161, DOI [DOI 10.1016/B978-0-12-587260-7.50011-X, 10.1016/B978-0-12-587260-7.50011-X]
[9]  
NIELSON G, 1987, TR87014 AR STAT CS D
[10]  
PRESS WH, 1986, NUMERICAL RECEPIES