LIE SYMMETRIES OF A GENERALIZED NON-LINEAR SCHRODINGER-EQUATION .1. THE SYMMETRY GROUP AND ITS SUBGROUPS

被引:112
作者
GAGNON, L
WINTERNITZ, P
机构
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1988年 / 21卷 / 07期
关键词
D O I
10.1088/0305-4470/21/7/013
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
引用
收藏
页码:1493 / 1511
页数:19
相关论文
共 50 条
  • [1] A CONNECTION BETWEEN NON-LINEAR EVOLUTION-EQUATIONS AND ORDINARY DIFFERENTIAL-EQUATIONS OF P-TYPE .1.
    ABLOWITZ, MJ
    RAMANI, A
    SEGUR, H
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1980, 21 (04) : 715 - 721
  • [2] Ablowitz MJ., 1981, SOLITONS INVERSE SCA, DOI [10.1137/1.9781611970883, DOI 10.1137/1.9781611970883]
  • [3] Bluman G.W., 1974, SIMILARITY METHODS D
  • [4] SYMMETRY BREAKING INTERACTIONS FOR TIME-DEPENDENT SCHRODINGER EQUATION
    BOYER, CP
    SHARP, RT
    WINTERNITZ, P
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1976, 17 (08) : 1439 - 1451
  • [5] OPTICAL GROUP AND ITS SUBGROUPS
    BURDET, G
    PATERA, J
    PERRIN, M
    WINTERNITZ, P
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1978, 19 (08) : 1758 - 1780
  • [6] BURDET G, 1978, ANN SCI MATH QUEBEC, V2, P81
  • [7] BUREAU FJ, 1972, ANN MAT PURA APPL, V41, P164
  • [8] Calogero F., 1982, SPECTRAL TRANSFORM S, V1
  • [9] CHAMPAGNE B, 1985, CRM1414 PREPR
  • [10] QUASI-SOLITON AND OTHER BEHAVIOR OF THE NONLINEAR CUBIC-QUINTIC SCHRODINGER-EQUATION
    COWAN, S
    ENNS, RH
    RANGNEKAR, SS
    SANGHERA, SS
    [J]. CANADIAN JOURNAL OF PHYSICS, 1986, 64 (03) : 311 - 315