STABILITY ANALYSIS OF THE DISCRETE LANDAU-GINSBURG EQUATION

被引:3
作者
ROWLANDS, G
机构
[1] Dept. of Phys., Warwick Univ., Coventry
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1994年 / 27卷 / 15期
关键词
D O I
10.1088/0305-4470/27/15/027
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The stability of time-independent solutions of a class of discrete nonlinear equations is investigated by extending a method developed earlier to study the stability of the static solutions of the continuous Landau-Ginsburg equation. A simple necessary condition for stability is found and it is shown that all nonlinear wave solutions are unstable while soliton and kink solutions may be stable. A further method is introduced which shows that the soliton solution is in fact unstable whilst the kink is marginally stable.
引用
收藏
页码:5313 / 5323
页数:11
相关论文
共 12 条
  • [1] INSTABILITY OF SPATIALLY QUASI-PERIODIC STATES OF THE GINZBURG-LANDAU EQUATION
    BRIDGES, TJ
    ROWLANDS, G
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1994, 444 (1921): : 347 - 362
  • [2] ON THE ANALYTIC TREATMENT OF NON-INTEGRABLE DIFFERENCE-EQUATIONS
    BROOMHEAD, DS
    ROWLANDS, G
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1983, 16 (01): : 9 - 24
  • [3] Chirikov BV, 1979, PHYS REP, V52, P265
  • [4] STABILITY ANALYSIS FOR THE QUARTIC LANDAU GINZBURG MODEL
    GRUNDLAND, AM
    INFELD, E
    ROWLANDS, G
    WINTERNITZ, P
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 1990, 2 (34) : 7143 - 7150
  • [5] STABILITY ANALYSIS FOR THE QUARTIC LANDAU-GINZBURG MODEL .2
    INFELD, E
    ROWLANDS, G
    WINTERNITZ, P
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 1991, 3 (23) : 4187 - 4193
  • [6] Infeld E., 1990, NONLINEAR WAVES SOLI
  • [7] Morse P., 1953, METHODS THEORETICAL
  • [8] INTEGRABLE MAPPINGS AND SOLITON-EQUATIONS .2.
    QUISPEL, GRW
    ROBERTS, JAG
    THOMPSON, CJ
    [J]. PHYSICA D, 1989, 34 (1-2): : 183 - 192
  • [9] ROWLANDS G, 1969, J PLASMA PHYS, V3, P567, DOI 10.1017/S0022377800004621
  • [10] Toda M., 1981, THEORY NONLINEAR LAT, DOI [10.1007/978-3-642-96585-2, DOI 10.1007/978-3-642-96585-2]