THE ZERO CURVATURE FORMULATION OF THE SKDV EQUATIONS

被引:15
作者
DAS, A
ROY, S
机构
[1] Department of Physics and Astronomy, University of Rochester, Rochester
关键词
D O I
10.1063/1.528616
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The fermionic extensions of the KdV equation are derived from the zero curvature condition associated with the superalgebra OSp(2| 1). This derivation clarifies why there are only two such extensions possible and why only one of them is supersymmetric. A Lenard type of derivation of these equations is also presented. © 1990 American Institute of Physics.
引用
收藏
页码:2145 / 2149
页数:5
相关论文
共 28 条
[1]   SUPERCONFORMAL ALGEBRA AND SUPER-KDV EQUATION - 2 INFINITE FAMILIES OF POLYNOMIAL FUNCTIONS WITH VANISHING POISSON BRACKETS [J].
BILAL, A ;
GERVAIS, JL .
PHYSICS LETTERS B, 1988, 211 (1-2) :95-100
[2]   SUPERCONFORMAL ALGEBRAS AND THEIR RELATION TO INTEGRABLE NONLINEAR-SYSTEMS [J].
CHAICHIAN, M ;
KULISH, PP .
PHYSICS LETTERS B, 1987, 183 (02) :169-174
[3]   LIE GROUPS AND KDV EQUATIONS [J].
CHERN, S ;
PENG, C .
MANUSCRIPTA MATHEMATICA, 1979, 28 (1-3) :207-217
[4]   SOLITON CONNECTION [J].
CRAMPIN, M ;
PIRANI, FAE ;
ROBINSON, DC .
LETTERS IN MATHEMATICAL PHYSICS, 1977, 2 (01) :15-19
[5]  
Das A., 1989, INTEGRABLE MODELS, DOI DOI 10.1142/0858
[6]  
Drazin P.G., 1983, SOLITONS
[7]  
Drinfeld V. G., 1986, P ICM
[8]  
Fadeev L D, 1987, HAMILTONIAN METHODS
[9]  
FADEEV LD, 1987, LOMI E1487 PREPR
[10]   KORTEWEG-DEVRIES EQUATION AND GENERALIZATIONS .6. METHODS FOR EXACT SOLUTION [J].
GARDNER, CS ;
GREENE, JM ;
KRUSKAL, MD ;
MIURA, RM .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1974, 27 (01) :97-133