SOLUTION STRUCTURE OF THE OCTAMER MOTIF IN IMMUNOGLOBULIN GENES VIA RESTRAINED MOLECULAR-DYNAMICS CALCULATIONS

被引:83
作者
WEISZ, K
SHAFER, RH
EGAN, W
JAMES, TL
机构
[1] UNIV CALIF SAN FRANCISCO, DEPT PHARMACEUT CHEM, SAN FRANCISCO, CA 94143 USA
[2] UNIV CALIF SAN FRANCISCO, DEPT RADIOL, SAN FRANCISCO, CA 94143 USA
[3] US FDA, CTR BIOL EVALUAT & RES, BIOPHYS LAB, BETHESDA, MD 20892 USA
关键词
D O I
10.1021/bi00167a046
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The solution structure of the DNA decamer d(CATTTGCATC).d(GATGCAAATG), comprising the octamer motif of immunoglobulin genes, is determined by restrained molecular dynamics (rMD) simulations. The restraint data set includes interproton distances and torsion angles for the deoxyribose sugar ring which were previously obtained by a complete relaxation matrix analysis of the two-dimensional nuclear Overhauser enhancement (2D NOE) intensities and by the quantitative simulation of cross-peaks in double-quantum-filtered correlated (2QF-COSY) spectra. The influence of torsion angles and the number of experimental distance restraints on the structural refinement has been systematically examined. Omitting part of the experimental NOE-derived distances results in reduced restraint violations and lower R factors but impairs structural convergence in the rMD refinement. Eight separate restrained molecular dynamics simulations were carried out for 20 ps each, starting from either energy-minimized A- or B-DNA. Mutual atomic root-mean-square (rms) differences among the refined structures are well below 1 angstrom and comparable to the rms fluctuations of the atoms about their average position, indicating convergence to essentially identical structures. The average refined structure was subjected to an additional 100 ps of rMD simulations and analyzed in terms of average torsion angles and helical parameters. The B-type duplex exhibits clear sequence-dependent variations in its geometry with a narrow minor groove at the T3.A3 tract and a large positive roll at the subsequent TG.CA step. This is accompanied by a noticeable bend of the global helix axis into the major groove. There is also evidence of significant flexibility of the sugar-phosphate backbone with rapid interconversion among different conformers.
引用
收藏
页码:354 / 366
页数:13
相关论文
共 88 条
[1]  
[Anonymous], AMBER 4 0
[2]   REFINEMENT OF STRUCTURE OF B-DNA AND IMPLICATIONS FOR ANALYSIS OF X-RAY-DIFFRACTION DATA FROM FIBERS OF BIOPOLYMERS [J].
ARNOTT, S ;
HUKINS, DWL .
JOURNAL OF MOLECULAR BIOLOGY, 1973, 81 (02) :93-105
[3]   OPTIMIZED PARAMETERS FOR A-DNA AND B-DNA [J].
ARNOTT, S ;
HUKINS, DWL .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1972, 47 (06) :1504-&
[4]   SOLUTION CONFORMATION OF PURINE-PYRIMIDINE DNA OCTAMERS USING NUCLEAR-MAGNETIC-RESONANCE, RESTRAINED MOLECULAR-DYNAMICS AND NOE-BASED REFINEMENT [J].
BALEJA, JD ;
GERMANN, MW ;
VANDESANDE, JH ;
SYKES, BD .
JOURNAL OF MOLECULAR BIOLOGY, 1990, 215 (03) :411-428
[5]   SOLUTION STRUCTURE OF PHAGE-LAMBDA 1/2-OPERATOR DNA BY USE OF NMR, RESTRAINED MOLECULAR-DYNAMICS, AND NOE-BASED REFINEMENT [J].
BALEJA, JD ;
PON, RT ;
SYKES, BD .
BIOCHEMISTRY, 1990, 29 (20) :4828-4839
[6]   INVITRO EVOLUTION OF INTRINSICALLY BENT DNA [J].
BEUTEL, BA ;
GOLD, L .
JOURNAL OF MOLECULAR BIOLOGY, 1992, 228 (03) :803-812
[7]   ITERATIVE PROCEDURE FOR STRUCTURE DETERMINATION FROM PROTON PROTON NOES USING A FULL RELAXATION MATRIX APPROACH - APPLICATION TO A DNA OCTAMER [J].
BOELENS, R ;
KONING, TMG ;
VANDERMAREL, GA ;
VANBOOM, JH ;
KAPTEIN, R .
JOURNAL OF MAGNETIC RESONANCE, 1989, 82 (02) :290-308
[8]   COMATOSE, A METHOD FOR CONSTRAINED REFINEMENT OF MACROMOLECULAR STRUCTURE BASED ON TWO-DIMENSIONAL NUCLEAR OVERHAUSER EFFECT SPECTRA [J].
BORGIAS, BA ;
JAMES, TL .
JOURNAL OF MAGNETIC RESONANCE, 1988, 79 (03) :493-512
[9]   MARDIGRAS - A PROCEDURE FOR MATRIX ANALYSIS OF RELAXATION FOR DISCERNING GEOMETRY OF AN AQUEOUS STRUCTURE [J].
BORGIAS, BA ;
JAMES, TL .
JOURNAL OF MAGNETIC RESONANCE, 1990, 87 (03) :475-487
[10]   FREE R-VALUE - A NOVEL STATISTICAL QUANTITY FOR ASSESSING THE ACCURACY OF CRYSTAL-STRUCTURES [J].
BRUNGER, AT .
NATURE, 1992, 355 (6359) :472-475