Passive microwave relative humidity retrievals using feedforward neural networks

被引:36
作者
CabreraMercader, CR
Staelin, DH
机构
[1] Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 1995年 / 33卷 / 06期
关键词
D O I
10.1109/36.477189
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
A technique for retrieving atmospheric humidity profiles using passive microwave spectral observations from satellite and Multilaq er Feedforward Neural Networks (MFNN) is introduced in this paper. Relative humidity retrievals on a global scale from simulated radiances at fifteen frequencies between 23.8 and 183.3 GHz yielded rms errors in relative humidity of 6-14% over ocean and 6-15% over land at pressure levels ranging from 131 mbar to 1013 mbar. Comparison with a combined statistical and physical iterative retrieval scheme shows that superior retrievals can be obtained at a lower computational cost using MFNN.
引用
收藏
页码:1324 / 1328
页数:5
相关论文
共 14 条
[1]  
[Anonymous], 1987, LEARNING INTERNAL RE
[2]  
CABRERAMERCADER C, 1993, THESIS MIT CAMBRIDGE
[3]  
DAWSON MS, 1993, IEEE GEOSCI REMOTE S, P6
[4]  
Escobar J., 1993, THESIS ECOLE POLYTEC
[5]   MULTILAYER FEEDFORWARD NETWORKS ARE UNIVERSAL APPROXIMATORS [J].
HORNIK, K ;
STINCHCOMBE, M ;
WHITE, H .
NEURAL NETWORKS, 1989, 2 (05) :359-366
[6]  
KLEIN LA, 1977, IEEE T ANTENN PROPAG, V25, P104, DOI [10.1109/TAP.1977.1141539, 10.1109/JOE.1977.1145319]
[7]   STATISTICAL ITERATIVE SCHEME FOR ESTIMATING ATMOSPHERIC RELATIVE-HUMIDITY PROFILES [J].
KUO, CC ;
STAELIN, DH ;
ROSENKRANZ, PW .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1994, 32 (02) :254-260
[8]  
Lippmann R. P., 1988, Computer Architecture News, V16, P7, DOI [10.1109/MASSP.1987.1165576, 10.1145/44571.44572]
[9]  
Rosenkranz P. W., 1993, ATMOSPHERIC REMOTE S
[10]  
ROSENKRANZ PW, 1982, J APPL METEOROL, V21, P1364, DOI 10.1175/1520-0450(1982)021<1364:AMFEOA>2.0.CO