A SOLUTION OF 2-DIMENSIONAL TOPOLOGICAL QUANTUM-GRAVITY

被引:179
作者
VERLINDE, E [1 ]
VERLINDE, H [1 ]
机构
[1] PRINCETON UNIV,JOSEPH HENRY LABS,PRINCETON,NJ 08544
基金
美国国家科学基金会;
关键词
D O I
10.1016/0550-3213(91)90200-H
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We give a formulation of two-dimensional topological gravity without matter in terms of a supersymmetric conformally invariant field theory and derive a path integral expression of the physical amplitudes. A careful analysis of the contact terms of the physical operators reveals the presence of a non-commutative algebra, isomorphic to the Virasoro algebra. We show that this algebra completely determines all the amplitudes at arbitrary genus, which coincide with those of the one-matrix model at the k = 1 critical point.
引用
收藏
页码:457 / 489
页数:33
相关论文
共 51 条
[1]  
ALYAREZGAUME L, 1987, COMMUN MATH PHYS, V112, P503
[2]  
AMBJORN J, 1986, PHYS LETT B, V168, P273
[3]  
BANKS T, 1989, RU8950 RUTG PREPR
[4]  
Baulieu L., 1988, Nuclear Physics B, Proceedings Supplements, V5B, P12, DOI 10.1016/0920-5632(88)90366-0
[5]  
BAULIEU L, IN PRESS CONFORMALLY
[6]  
BOULATOV D, 1986, NUCL PHYS B, V275, P543
[7]   EXACTLY SOLVABLE FIELD-THEORIES OF CLOSED STRINGS [J].
BREZIN, E ;
KAZAKOV, VA .
PHYSICS LETTERS B, 1990, 236 (02) :144-150
[8]  
BREZIN E, LPENS89182 PREPR
[9]  
BREZIN E, RU8947 RUTG PREPR
[10]   THE ISING-MODEL, THE YANG-LEE EDGE SINGULARITY, AND 2D QUANTUM-GRAVITY [J].
CRNKOVIC, C ;
GINSPARG, P ;
MOORE, G .
PHYSICS LETTERS B, 1990, 237 (02) :196-201