HIGHER-ORDER NOETHER SYMMETRIES AND CONSTANTS OF THE MOTION

被引:40
作者
SARLET, W
CANTRIJN, F
机构
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1981年 / 14卷 / 02期
关键词
D O I
10.1088/0305-4470/14/2/023
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
引用
收藏
页码:479 / 492
页数:14
相关论文
共 20 条
[1]   INVERSION OF NOETHERS THEOREM IN CLASSICAL DYNAMICAL-SYSTEMS [J].
CANDOTTI, E ;
VITALE, B ;
PALMIERI, C .
AMERICAN JOURNAL OF PHYSICS, 1972, 40 (03) :424-&
[2]   CONSTANTS OF MOTION IN LAGRANGIAN MECHANICS [J].
CRAMPIN, M .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1977, 16 (10) :741-754
[3]  
Djukic D. S., 1973, International Journal of Non-Linear Mechanics, V8, P479, DOI 10.1016/0020-7462(73)90039-5
[4]   NOETHER THEORY FOR NON-CONSERVATIVE GENERALIZED MECHANICAL SYSTEMS [J].
DJUKIC, DS ;
STRAUSS, AM .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1980, 13 (02) :431-435
[5]  
Godbillon C., 1969, GEOMETRIE DIFFERENTI
[6]  
HERMANN R, 1968, DIFFERENTIAL GEOMETR
[7]   COMPLETE SYMMETRY GROUP OF THE ONE-DIMENSIONAL TIME-DEPENDENT HARMONIC-OSCILLATOR [J].
LEACH, PGL .
JOURNAL OF MATHEMATICAL PHYSICS, 1980, 21 (02) :300-304
[8]   DYNAMICAL SYMMETRIES AND CONSERVED QUANTITIES [J].
LUTZKY, M .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1979, 12 (07) :973-981
[9]   SYMMETRY GROUPS AND CONSERVED QUANTITIES FOR HARMONIC-OSCILLATOR [J].
LUTZKY, M .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1978, 11 (02) :249-258
[10]   NOETHER MAP [J].
MARTINEZALONSO, L .
LETTERS IN MATHEMATICAL PHYSICS, 1979, 3 (05) :419-424