THE PROPER FORMULA FOR RELATIVE ENTROPY AND ITS ASYMPTOTICS IN QUANTUM PROBABILITY

被引:333
作者
HIAI, F [1 ]
PETZ, D [1 ]
机构
[1] HUNGARIAN ACAD SCI, INST MATH, H-1364 BUDAPEST, HUNGARY
关键词
D O I
10.1007/BF02100287
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Umegaki's relative entropy S(omega, phi) = Tr D-omega(log D-omega-log D-phi) (of states omega and phi with density operators D-omega and D-phi, respectively) is shown to be an asymptotic exponent considered from the quantum hypothesis testing viewpoint. It is also proved that some other versions of the relative entropy give rise to the same asymptotics as Umegaki's one. As a byproduct, the inequality Tr A log AB greater-than-or-equal-to Tr A(log A + log B) is obtained for positive definite matrices A and B.
引用
收藏
页码:99 / 114
页数:16
相关论文
共 29 条
[1]  
[Anonymous], 1976, MATH SCI ENG
[2]  
Araki H., 1977, PUBL RES I MATH SCI, V13, P173
[3]  
Araki H., 1976, PUBL RES I MATH SCI, V11, P809, DOI DOI 10.2977/PRIMS/1195191148
[4]  
Belavkin Viacheslav P., 1982, ANN I HENRI POINCARE, V37, P51
[5]  
Billingsley P., 1965, ERGODIC THEORY INFOR
[6]  
Blahut R.E., 1987, PRINCIPLES PRACTICE
[7]   ENTROPY FOR AUTOMORPHISMS OF II1 VONNEUMANN ALGEBRAS [J].
CONNES, A ;
STORMER, E .
ACTA MATHEMATICA, 1975, 134 (3-4) :289-306
[8]  
CSISZAR I, 1981, INFORMATION THEORY C
[9]   CONTINUITY AND RELATIVE HAMILTONIANS [J].
DONALD, MJ .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1991, 136 (03) :625-632
[10]  
Doplicher S., 1968, COMMUN MATH PHYS, V7, P1