ASYMPTOTIC-EXPANSION OF STOCHASTIC FLOWS

被引:46
作者
CASTELL, F
机构
[1] Laboratoire de Modélisation stochastique et statistique, Université Paris-Sud, Orsay Cedex, F-91 405
关键词
D O I
10.1007/BF01192134
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study the asymptotic expansion in small time of the solution of a stochastic differential equation. We obtain a universal and explicit formula in terms of Lie brackets and iterated stochastic Stratonovich integrals. This formula contains the results of Doss [6], Sussmann [15], Fliess and Normand-Cyrot [7], Krener and Lobry [10], Yamato [17] and Kunita [11] in the nilpotent case, and extends to general diffusions the representation given by Ben Arous [3] for invariant diffusions on a Lie group. The main tool is an asymptotic expansion for deterministic ordinary differential equations, given by Strichartz [14].
引用
收藏
页码:225 / 239
页数:15
相关论文
共 17 条
[1]  
AZENCOTT R, 1984, LECT NOTES MATH, V1059, P402
[2]  
Azencott R., 1982, LECT NOTES MATH, V921, P237, DOI DOI 10.1007/BFB0092653)
[3]  
BENAROUS G, 1989, PROBAB THEORY REL, V81, P29
[4]  
BENAROUS G, 1989, ANN I FOURIER, V39, P73
[5]  
BOURBAKI N, 1972, GROUPES ALGEBRES LIE, V2
[6]  
DOSS H, 1977, ANN I H POINCARE B, V13, P99
[7]  
FLIESS M, 1982, LECT NOTES MATH, V920, P257
[8]  
HU YZ, 1992, LECT NOTES MATH, V1526, P579
[9]  
Jacobson N., 1962, LIE ALGEBRAS
[10]  
KRENER AJ, 1979, STOCHASTICS, V4, P193