USE OF MULTIPLY NESTED GRIDS FOR THE SOLUTION OF FLUX-LIMITED RADIATION DIFFUSION AND HYDRODYNAMICS

被引:36
作者
YORKE, HW
KAISIG, M
机构
[1] Institut für Astronomie und Astrophysik, Am Hubland
关键词
D O I
10.1016/0010-4655(94)00184-4
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Local grid refinement techniques allow improved spatial resolution for a large class of astrophysical problems involving radiation hydrodynamics. We describe here the implementation of multiply nested grids in a 2D radiation hydrodynamic code. The basic hydrodynamic code is explicit (except for the equation of energy conservation), spatially second-order, invokes artificial viscosity for the treatment of shocks, and through the use of operator-splitting is greater than first-order accurate in time. Radiation transfer is treated in the flux-limited diffusion approximation and solved implicitly in a separate substep. Tests and the following astrophysical applications are presented and briefly discussed: (a) expansion of a blast wave through several nested grids; (b) protostellar collapse with the formation of a circumstellar disk around a central source; (c) the interaction of circumstellar disk with a hot, hydrogen-ionizing star with a stellar wind.
引用
收藏
页码:29 / 44
页数:16
相关论文
共 36 条
[1]   LOCAL ADAPTIVE MESH REFINEMENT FOR SHOCK HYDRODYNAMICS [J].
BERGER, MJ ;
COLELLA, P .
JOURNAL OF COMPUTATIONAL PHYSICS, 1989, 82 (01) :64-84
[2]   ADAPTIVE MESH REFINEMENT FOR HYPERBOLIC PARTIAL-DIFFERENTIAL EQUATIONS [J].
BERGER, MJ ;
OLIGER, J .
JOURNAL OF COMPUTATIONAL PHYSICS, 1984, 53 (03) :484-512
[3]   EVOLUTION OF ROTATING INTERSTELLAR CLOUDS .1. NUMERICAL TECHNIQUES [J].
BLACK, DC ;
BODENHEIMER, P .
ASTROPHYSICAL JOURNAL, 1975, 199 (03) :619-632
[4]  
BODENHEIMER P, 1984, ASTRON ASTROPHYS, V138, P215
[5]   MULTIPLE FRAGMENTATION IN COLLAPSING PROTOSTARS [J].
BURKERT, A ;
BODENHEIMER, P .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 1993, 264 (04) :798-806
[6]  
CHEVALIER RA, 1974, ASTROPHYS J, V188, P501, DOI 10.1086/152740
[7]  
DORFI E, 1982, ASTRON ASTROPHYS, V114, P151
[8]  
DORFI E, 1981, THESIS U VIENNA
[9]   SIMPLE ADAPTIVE GRIDS FOR 1-D INITIAL-VALUE PROBLEMS [J].
DORFI, EA ;
DRURY, LO .
JOURNAL OF COMPUTATIONAL PHYSICS, 1987, 69 (01) :175-195
[10]  
HACKBUSCH W, 1985, MULTI GRID METHODS A