THE INITIAL-VALUE PROBLEM FOR A CLASS OF GENERAL RELATIVISTIC FLUID BODIES

被引:54
作者
RENDALL, AD
机构
[1] Max-Planck-Institut für Astrophysik, 8046 Garching bei München
关键词
D O I
10.1063/1.529766
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A body or collection of bodies made of perfect fluid can be described in general relativity by a solution of the Einstein-Euler system where the mass density has spatially compact support. It is shown that for certain equations of state there exists a wide class of solutions of this type corresponding to appropriate initial data given on a spacelike hypersurface. This class is not constrained by any symmetry requirements. The key element of the proof is to write the equations as a symmetric hyperbolic system which is regular both for nonvanishing density and in vacuum.
引用
收藏
页码:1047 / 1053
页数:7
相关论文
共 14 条
[1]  
[Anonymous], 1981, PRINCETON MATH SERIE
[2]   FR CAUCHY-PROBLEM FOR EINSTEIN-LIOUVILLE DIFFERENTIAL INTEGRAL SYSTEM [J].
CHOQUETBRUHAT, Y .
ANNALES DE L INSTITUT FOURIER, 1971, 21 (03) :181-+
[3]   ELLIPTIC-SYSTEMS IN HS,DELTA-SPACES ON MANIFOLDS WHICH ARE EUCLIDEAN AT INFINITY [J].
CHOQUETBRUHAT, Y ;
CHRISTODOULOU, D .
ACTA MATHEMATICA, 1981, 146 (1-2) :129-150
[4]  
CHOQUETBRUHAT Y, 1972, GEN RELAT GRAVIT, V2, P359
[5]  
CHOQUETBRUHAT Y, 1980, GENERAL RELATIVITY G, V1
[6]  
CHRISTODOULOU D, 1981, J MATH PURE APPL, V60, P99
[7]  
CHRISTODOULOU D, 1981, COMMUN MATH PHYS, V80, P221
[8]  
Lichnerowicz A., 1944, J MATH PURE APPL, V23, P37
[9]  
MAKINO T, 1986, PATTERNS WAVES
[10]  
MAKINO T., 1986, J APPL MATH, V3, P249