To test the hypothesis that the action of antineoplastic ether-linked lipids in leukemic cells is associated with their ability to inhibit protein kinase C (PKC), we have compared the effects of two ether-linked lipids, 1-O-hexadecyl-2-O-methyl-sn-glycero-3-phosphocholine (ET16-OCH3-GPC) and 1-O-hexadecyl-2-O-methyl-sn-glycero-3-(S-beta-D-1'-thioglucopyranosyl)-sn-glycerol (ET16-OCH3-beta-thio-Glc), on two different leukemic cell lines (WEHI-3B and R6X-B15). ET16-OCH3-GPC killed WEHI-3B cells with an EC50 value of 2.5-mu-M, whereas it was far less effective against R6X-B15 cells (EC50 = 40-mu-M). In contrast, the beta-anomer of ET16-OCH3-beta-thio-Glc did not kill either cell line at concentrations up to 40-mu-M. Both ET16-OCH3-GPC and ET16-OCH3-thio-Glc inhibited 12-O-tetradecanoylphorbol 12,13-dibutyrate (TPA)-induced PKC translocation in both WEHI-3B and R6X-BI5 cells. When WEHI-3B cells were first exposed to TPA, and then to ET16-OCH3-GPC, no significant decrease in PKC activity in the particulate fraction was noticed. When, however, the cells were first exposed to ET16-OCH3-GPC and then to TPA, the enzyme activity in the particulate fraction was decreased by 20-30%. A phorbol dibutyrate binding assay showed that the decrease in membrane-associated PKC activity and the increase in cytosolic PKC activity did not result from impeded enzyme translocation. These results suggest that the similar PKC inhibitory potency of ET16-OCH3-GPC and ET16-OCH3-beta-thio-Glc: (a) is not correlated with the widely different cytotoxicities of these agents and (b) is probably due to interference with the binding of diacylglycerol/phosphatidylserine or TPA to PKC. Taken together, these results suggest that the ether-linked lipids compete with diacylglycerol/phosphatidylserine or TPA for binding sites on PKC required for enzyme activation.