TOWARD A GENERAL LAW OF THE ITERATED LOGARITHM IN BANACH-SPACE

被引:26
作者
EINMAHL, U
机构
关键词
BOUNDED LAW OF THE ITERATED LOGARITHM; K-FUNCTION; LIL BEHAVIOR; RANDOMIZATION; RADEMACHER RANDOM VARIABLES;
D O I
10.1214/aop/1176989009
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A general bounded law of the iterated logarithm for Banach space valued random variables is established. Our result implies: (a) the bounded LIL of Ledoux and Talagrand, (b) a bounded LIL for random variables in the domain of attraction of a Gaussian law and (c) new LIL results for random variables outside the domain of attraction of a Gaussian law in cases where the classical norming sequence {root nLLn} does not work. Basic ingredients of our proof are an infinite-dimensional Fuk-Nagaev type inequality and an infinite-dimensional version of Klass's K-function.
引用
收藏
页码:2012 / 2045
页数:34
相关论文
共 21 条
[3]   ON THE ALMOST SURE BEHAVIOR OF SUMS OF IID RANDOM-VARIABLES IN HILBERT-SPACE [J].
EINMAHL, U .
ANNALS OF PROBABILITY, 1991, 19 (03) :1227-1263
[4]   STABILITY RESULTS AND STRONG INVARIANCE-PRINCIPLES FOR PARTIAL-SUMS OF BANACH-SPACE VALUED RANDOM-VARIABLES [J].
EINMAHL, U .
ANNALS OF PROBABILITY, 1989, 17 (01) :333-352
[5]  
FELLER W, 1968, J MATH MECH, V18, P343
[6]  
HOFFMANNJORGENSEN J, 1974, STUD MATH, V52, P159
[7]   SUMS OF INDEPENDENT RANDOM VARIABLES WITHOUT MOMENT CONDITIONS [J].
KESTEN, H .
ANNALS OF MATHEMATICAL STATISTICS, 1972, 43 (03) :701-&
[8]   PRECISION BOUNDS FOR THE RELATIVE ERROR IN THE APPROXIMATION OF E[SN] AND EXTENSIONS [J].
KLASS, MJ .
ANNALS OF PROBABILITY, 1980, 8 (02) :350-367
[9]   THE FINITE MEAN LIL BOUNDS ARE SHARP [J].
KLASS, MJ .
ANNALS OF PROBABILITY, 1984, 12 (03) :907-911
[10]   TOWARD A UNIVERSAL LAW OF ITERATED LOGARITHM .2. [J].
KLASS, MJ .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1977, 39 (02) :151-165