RIDDLED BASINS

被引:411
作者
Alexander, J. C. [1 ]
Yorke, James A. [1 ]
You, Zhiping [1 ]
Kan, I. [2 ]
机构
[1] Univ Maryland, Dept Math, College Pk, MD 20742 USA
[2] George Mason Univ, Dept Math, Fairfax, VA 22030 USA
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 1992年 / 2卷 / 04期
基金
美国国家科学基金会;
关键词
D O I
10.1142/S0218127492000446
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Theory and examples of attractors with basins which are of positive measure, but contain no open sets, are developed; such basins are called riddled. A theorem is established which states that riddled basins are detected by normal Lyapunov exponents. Several examples, both mathematically rigorous and numerical, motivated by applications in the literature, are presented.
引用
收藏
页码:795 / 813
页数:19
相关论文
共 21 条
  • [1] SYMMETRY-INCREASING BIFURCATION OF CHAOTIC ATTRACTORS
    CHOSSAT, P
    GOLUBITSKY, M
    [J]. PHYSICA D, 1988, 32 (03): : 423 - 436
  • [2] Franke J. E., 1992, J MATH BIOL IN PRESS, V30
  • [3] GLOBAL ATTRACTORS IN COMPETITIVE-SYSTEMS
    FRANKE, JE
    YAKUBU, AA
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1991, 16 (02) : 111 - 129
  • [4] INTERMITTENCY CAUSED BY CHAOTIC MODULATION .2. LYAPUNOV EXPONENT, FRACTAL STRUCTURE AND POWER SPECTRUM
    FUJISAKA, H
    ISHII, H
    INOUE, M
    YAMADA, T
    [J]. PROGRESS OF THEORETICAL PHYSICS, 1986, 76 (06): : 1198 - 1209
  • [5] Kan I., 1992, 2 COEXISTING STRUCTU
  • [6] King G. P., 1991, NONLINEAR EQUATIONS, P257
  • [7] Ledrappier F., 1982, ERGOD THEOR DYN SYST, V2, P203, DOI DOI 10.1017/S0143385700001528
  • [8] DYNAMICS OF REAL POLYNOMIALS ON THE PLANE AND TRIPLE POINT PHASE-TRANSITION
    LOPES, AO
    [J]. MATHEMATICAL AND COMPUTER MODELLING, 1990, 13 (09) : 17 - 32
  • [9] ON THE DYNAMICS OF REAL POLYNOMIALS ON THE PLANE
    LOPES, AO
    [J]. COMPUTERS & GRAPHICS, 1992, 16 (01) : 15 - 23
  • [10] FRACTAL BASIN BOUNDARIES
    MCDONALD, SW
    GREBOGI, C
    OTT, E
    YORKE, JA
    [J]. PHYSICA D, 1985, 17 (02): : 125 - 153