GMRESR: a Family of Nested GMRES Methods

被引:175
作者
van der Vorst, H. A. [1 ]
Vuik, C. [2 ]
机构
[1] Univ Utrecht, Math Inst, NL-3584 CD Utrecht, Netherlands
[2] Delft Univ, Dept Tech Math & Comp Sci, NL-2602 CD Delft, Netherlands
关键词
GMRES; Unsymmetric linear systems; Iterative solver;
D O I
10.1002/nla.1680010404
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Recently Eirola and Nevanlinna have proposed an iterative solution method for unsymmetric linear systems, in which the preconditioner is updated from step to step. Following their ideas we suggest variants of GMRES, in which a preconditioner is constructed per iteration step by a suitable approximation process, e. g., by GMRES itself. Our numerical experiments indicate that this may lead to considerable savings in CPU-time and memory requirements in typical CFD applications.
引用
收藏
页码:369 / 386
页数:18
相关论文
共 20 条
[1]   A BLACK-BOX GENERALIZED CONJUGATE-GRADIENT SOLVER WITH INNER ITERATIONS AND VARIABLE-STEP PRECONDITIONING [J].
AXELSSON, O ;
VASSILEVSKI, PS .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1991, 12 (04) :625-644
[2]   ON THE EIGENVALUE DISTRIBUTION OF A CLASS OF PRECONDITIONING METHODS [J].
AXELSSON, O ;
LINDSKOG, G .
NUMERISCHE MATHEMATIK, 1986, 48 (05) :479-498
[3]  
Bai Z., 1991, 9103 U KENT
[4]  
Chronopoulos A. T., 1990, 9043R UMSI
[5]  
DESTURLER E, 1991, P 13 IMACS WORLD C C, P682
[6]   ACCELERATING WITH RANK-ONE UPDATES [J].
EIROLA, T ;
NEVANLINNA, O .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1989, 121 :511-520
[7]   VARIATIONAL ITERATIVE METHODS FOR NONSYMMETRIC SYSTEMS OF LINEAR-EQUATIONS [J].
EISENSTAT, SC ;
ELMAN, HC ;
SCHULTZ, MH .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1983, 20 (02) :345-357
[8]  
Gustafsson I., 1978, BIT (Nordisk Tidskrift for Informationsbehandling), V18, P142, DOI 10.1007/BF01931691
[9]  
Huang Y., 1989, 8909 DELFT U TECHN
[10]   ITERATIVE SOLUTION METHOD FOR LINEAR-SYSTEMS OF WHICH COEFFICIENT MATRIX IS A SYMMETRIC M-MATRIX [J].
MEIJERINK, JA ;
VANDERVORST, HA .
MATHEMATICS OF COMPUTATION, 1977, 31 (137) :148-162