SPATIAL FREE-FORM DEFORMATION WITH SCATTERED DATA INTERPOLATION METHODS

被引:25
作者
RUPRECHT, D
NAGEL, R
MULLER, H
机构
[1] Universität Dortmund, D-44221 Dortmund, Informatik VII
关键词
D O I
10.1016/0097-8493(94)00122-F
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
The problem of deforming a given spatial shape is treated. There are many examples of applications in visual computing: fitting surfaces to sampled data points in space, correction of distortions in tomographic imaging, modeling of free-form geometric shapes, and animating metamorphoses of geometric objects. Our solution warps the space surrounding the given shape with the effect of deforming the embedded shape, too, with a function derived with scattered data interpolation methods from the displacements of a finite set of control points that can be placed arbitrarily and adaptively. We present algorithms implementing this idea on parametric surfaces and rasterized volume data.
引用
收藏
页码:63 / 71
页数:9
相关论文
共 27 条
[1]  
Barr A. H., 1984, Computers & Graphics, V18, P21
[2]   DEFORMATION OF N-DIMENSIONAL OBJECTS [J].
Borrel, Paul ;
Bechmann, Dominique .
INTERNATIONAL JOURNAL OF COMPUTATIONAL GEOMETRY & APPLICATIONS, 1991, 1 (04) :427-453
[3]  
Coquillart Sabine, 1990, P 17 ANN C COMP GRAP, V24, P187, DOI [10.1145/97880.97900, DOI 10.1145/97880.97900]
[4]  
Duchon J, 1977, LECT NOTES MATH, P85, DOI DOI 10.1007/BFB0086566
[5]  
Eck M., 1991, CAD COMPUTERGRAPHIK, V13, P109
[6]   A NONALIASING, REAL-TIME SPATIAL TRANSFORM TECHNIQUE [J].
FANT, KM .
IEEE COMPUTER GRAPHICS AND APPLICATIONS, 1986, 6 (01) :71-80
[7]   SMOOTH INTERPOLATION OF LARGE SETS OF SCATTERED DATA [J].
FRANKE, R ;
NIELSON, G .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1980, 15 (11) :1691-1704
[8]   SHEPARDS METHOD OF METRIC INTERPOLATION TO BIVARIATE AND MULTIVARIATE INTERPOLATION [J].
GORDON, WJ ;
WIXOM, JA .
MATHEMATICS OF COMPUTATION, 1978, 32 (141) :253-264
[9]   MULTIQUADRIC EQUATIONS OF TOPOGRAPHY AND OTHER IRREGULAR SURFACES [J].
HARDY, RL .
JOURNAL OF GEOPHYSICAL RESEARCH, 1971, 76 (08) :1905-+
[10]   LEAST-SQUARES PREDICTION OF GRAVITY ANOMALIES, GEOIDAL UNDULATIONS, AND DEFLECTIONS OF VERTICAL WITH MULTIQUADRIC HARMONIC-FUNCTIONS [J].
HARDY, RL ;
GOPFERT, WM .
GEOPHYSICAL RESEARCH LETTERS, 1975, 2 (10) :423-426