RANDOM-BREAKAGE MAPPING, A RAPID METHOD FOR PHYSICALLY LOCATING AN INTERNAL SEQUENCE WITH RESPECT TO THE ENDS OF A DNA MOLECULE

被引:19
作者
GAME, JC [1 ]
BELL, M [1 ]
KING, JS [1 ]
MORTIMER, RK [1 ]
机构
[1] UNIV CALIF BERKELEY,DEPT MOLEC & CELL BIOL,DIV BIOPHYS & CELL PHYSIOL,BERKELEY,CA 94720
关键词
D O I
10.1093/nar/18.15.4453
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
We describe a method for determining the position of a cloned internal sequence with respect to the ends of a DNA molecule. The molecules are randomly broken at low frequency and the fragments are subjected to electrophoresis. Southern hybridization using the cloned DNA as a probe identifies only those fragments containing the sequence. The size distribution of these fragments is such that two threshold changes in intensity of signal are seen in the smear pattern below the unbroken molecules. The positions of the changes represent the distances from the sequence to each molecular end. The intensity changes arise because the natural ends of the molecules influence the fragment distribution obtained. From once-broken molecules, no fragments can arise that contain a given sequence and are shorter than the distance between that sequence and the nearest molecular end. We tested the method by using x-rays to induce breakage in yeast DNA. Genes of independently known position were mapped within whole chromosomes or Not I restriction fragments using Southern blots from gels of irradiated molecules. We present equations to predict fragment distribution as a function of break-frequency and position of the probed sequence. © 1990 Oxford University Press.
引用
收藏
页码:4453 / 4461
页数:9
相关论文
共 32 条
[1]   NUCLEOTIDE-SEQUENCE OF YEAST LEU2 SHOWS 5'-NONCODING REGION HAS SEQUENCES COGNATE TO LEUCINE [J].
ANDREADIS, A ;
HSU, YP ;
KOHLHAW, GB ;
SCHIMMEL, P .
CELL, 1982, 31 (02) :319-325
[2]  
BIRNBOIM HC, 1979, NUCLEIC ACIDS RES, V7, P1513
[3]   CHEF ELECTROPHORESIS, A SENSITIVE TECHNIQUE FOR THE DETERMINATION OF DNA DOUBLE-STRAND BREAKS [J].
BLOCHER, D ;
EINSPENNER, M ;
ZAJACKOWSKI, J .
INTERNATIONAL JOURNAL OF RADIATION BIOLOGY, 1989, 56 (04) :437-448
[4]   TRANSFORMATION OF YEAST SPHEROPLASTS WITHOUT CELL-FUSION [J].
BURGERS, PMJ ;
PERCIVAL, KJ .
ANALYTICAL BIOCHEMISTRY, 1987, 163 (02) :391-397
[5]   CLONING OF LARGE SEGMENTS OF EXOGENOUS DNA INTO YEAST BY MEANS OF ARTIFICIAL CHROMOSOME VECTORS [J].
BURKE, DT ;
CARLE, GF ;
OLSON, MV .
SCIENCE, 1987, 236 (4803) :806-812
[6]  
CALDERON IL, 1982, CURRENT GENETICS, V7, P93
[7]   ELECTROPHORETIC SEPARATIONS OF LARGE DNA-MOLECULES BY PERIODIC INVERSION OF THE ELECTRIC-FIELD [J].
CARLE, GF ;
FRANK, M ;
OLSON, MV .
SCIENCE, 1986, 232 (4746) :65-68
[8]   SEPARATION OF CHROMOSOMAL DNA-MOLECULES FROM YEAST BY ORTHOGONAL-FIELD-ALTERNATION GEL-ELECTROPHORESIS [J].
CARLE, GF ;
OLSON, MV .
NUCLEIC ACIDS RESEARCH, 1984, 12 (14) :5647-5664
[10]   SEPARATION OF LARGE DNA-MOLECULES BY CONTOUR-CLAMPED HOMOGENEOUS ELECTRIC-FIELDS [J].
CHU, G ;
VOLLRATH, D ;
DAVIS, RW .
SCIENCE, 1986, 234 (4783) :1582-1585