CIRCULANT AND SKEW-CIRCULANT PRECONDITIONERS FOR SKEW-HERMITIAN-TYPE TOEPLITZ-SYSTEMS

被引:29
作者
CHAN, RH [1 ]
JIN, XQ [1 ]
机构
[1] UNIV HONG KONG,DEPT MATH,HONG KONG,HONG KONG
来源
BIT | 1991年 / 31卷 / 04期
关键词
SKEW-HERMITIAN TYPE TOEPLITZ MATRIX; CIRCULANT MATRIX; SKEW-CIRCULANT MATRIX; PRECONDITIONED CONJUGATE GRADIENT METHOD;
D O I
10.1007/BF01933178
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We study the solutions of Toeplitz systems A(n)x = b by the preconditioned conjugate gradient method. The n x n matrix A(n) is of the form a0I + H(n) where a0 is a real number, I is the identity matrix and H(n) is a skew-Hermitian Toeplitz matrix. Such matrices often appear in solving discretized hyperbolic differential equations. The preconditioners we considered here are the circulant matrix C(n) and the skew-circulant matrix S(n) where A(n) = 1/2(C(n) + S(n)). The convergence rate of the iterative method depends on the distribution of the singular values of the matrices C(n)-1 A(n) and S(n)-1 A(n). For Toeplitz matrices A(n) with entries which are Fourier coefficients of functions in the Wiener class, we show the invertibility of C(n) and S(n) and prove that the singular values of C(n)-1 A(n) and S(n)-1 A(n) are clustered around 1 for large n. Hence, if the conjugate gradient method is applied to solve the preconditioned systems, we expect fast convergence.
引用
收藏
页码:632 / 646
页数:15
相关论文
共 11 条
[1]   SOLUTION OF CERTAIN SKEW SYMMETRIC LINEAR-SYSTEMS [J].
BUCKLEY, A .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1977, 14 (03) :566-570
[2]   TOEPLITZ EQUATIONS BY CONJUGATE GRADIENTS WITH CIRCULANT PRECONDITIONER [J].
CHAN, RH ;
STRANG, G .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1989, 10 (01) :104-119
[4]   THE CIRCULANT OPERATOR IN THE BANACH ALGEBRA OF MATRICES [J].
CHAN, RH ;
JIN, XQ ;
YEUNG, MC .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1991, 149 :41-53
[5]  
Davis PJ, 1979, CIRCULANT MATRICES
[6]  
Golub G.H., 1996, MATH GAZ, VThird
[7]  
HOLMGREN S, 1989, 123 UPPS U DEP SCI C
[8]  
Katznelson Y., 1976, INTRO HARMONIC ANAL
[9]   CGS, A FAST LANCZOS-TYPE SOLVER FOR NONSYMMETRIC LINEAR-SYSTEMS [J].
SONNEVELD, P .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1989, 10 (01) :36-52
[10]  
STRANG G, 1986, STUD APPL MATH, V74, P171