NUMERICAL-STUDIES ON 2-DIMENSIONAL REACTION-DIFFUSION EQUATIONS

被引:13
作者
TANG, S [1 ]
QIN, S [1 ]
WEBER, RO [1 ]
机构
[1] UNIV NEW S WALES,DEPT MATH,ADFA,CANBERRA,ACT 2600,AUSTRALIA
来源
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES B-APPLIED MATHEMATICS | 1993年 / 35卷
关键词
D O I
10.1017/S0334270000009140
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Various initial and boundary value problems for a 2-dimensional reaction-diffusion equation are studied numerically by an explicit Finite Difference Method (FDM), a Galerkin and a Petrov-Galerkin Finite Element Method (FEM). The results not only show the transition processes from different local initial disturbances to quasitravelling waves, but also demonstrate the long term behaviour of the solutions, which is determined by the system itself and does not depend on the details of the initial disturbances.
引用
收藏
页码:223 / 243
页数:21
相关论文
共 5 条
[1]   FINITE-ELEMENT APPROXIMATION TO 2-DIMENSIONAL SINE-GORDON SOLITONS [J].
ARGYRIS, J ;
HAASE, M ;
HEINRICH, JC .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1991, 86 (01) :1-26
[2]   MULTIDIMENSIONAL NON-LINEAR DIFFUSION ARISING IN POPULATION-GENETICS [J].
ARONSON, DG ;
WEINBERGER, HF .
ADVANCES IN MATHEMATICS, 1978, 30 (01) :33-76
[3]  
GRIMSHAW R, 1990, STUD APPL MATH, V83, P223
[4]   NUMERICAL STUDY OF FISHERS EQUATION BY A PETROV-GALERKIN FINITE-ELEMENT METHOD [J].
TANG, S ;
WEBER, RO .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES B-APPLIED MATHEMATICS, 1991, 33 :27-38
[5]  
TANG S, 1991, CHINESE J APPL MATH, V12, P751