L2-INTEGRABILITY OF 2ND-ORDER DERIVATIVES FOR POISSON EQUATION IN NONSMOOTH DOMAINS

被引:39
作者
ADOLFSSON, V
机构
[1] UNIV GOTEBORG,DEPT MATH,S-41296 GOTHENBURG,SWEDEN
[2] CHALMERS UNIV TECHNOL,S-41296 GOTHENBURG,SWEDEN
关键词
D O I
10.7146/math.scand.a-12391
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We define a certain class of domains with corners directed outwards only, thus being natural extensions of convex domains. We show that such a domain OMEGA can be approximated with smooth domains OMEGA(m) of the same type, Using a technique based on integration by parts we derive an a priori estimate //u//H-2(OMEGAm) less-than-or-equal-to C(OMEGA) //DELTAu//L2(OMEGAm) for u is-an-element-of H-2(OMEGA(m)) and H-0(1)(OMEGA(m)) where C(OMEGA) is independent of m. This enables us to obtain a solution u in H-2(OMEGA) of the Dirichlet problem [GRAPHICS] Here gamma is the trace operator on the boundary of OMEGA.
引用
收藏
页码:146 / 160
页数:15
相关论文
共 10 条
[1]  
Adams RA., 2003, PURE APPL MATH SOB O, V2
[2]  
ADOLFSSON KV, 1989, THESIS CHALMERS U TE
[3]  
CACCIOPPOLI R, 1950, GIORN MAT BATT, V80, P186
[4]  
Grisvard P., 1975, PUBLICATIONS SEMINAI, V1, P1
[5]  
Grisvard P., 1985, ELLIPTIC PROBLEMS NO, V24
[6]  
Kadlec J., 1964, CZECH MATH J, V14, P386
[7]  
KONDRATIEV VA, 1979, DOKL AKAD NAUK SSSR+, V246, P812
[8]  
MAZYA VG, 1973, IZV YSS UCEBN ZAV MA
[9]  
MAZYA VG, 1980, SOVIET MATH DOKL, V21
[10]  
[No title captured]