CLASSICAL INTEGRABLE FINITE-DIMENSIONAL SYSTEMS RELATED TO LIE-ALGEBRAS

被引:532
作者
OLSHANETSKY, MA
PERELOMOV, AM
机构
来源
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS | 1981年 / 71卷 / 05期
关键词
D O I
10.1016/0370-1573(81)90023-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
引用
收藏
页码:313 / 400
页数:88
相关论文
共 109 条
[1]   CLASS OF POLYNOMIALS CONNECTED WITH KORTEWEG-DEVRIES EQUATION [J].
ADLER, M ;
MOSER, J .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1978, 61 (01) :1-30
[2]   SOME FINITE DIMENSIONAL INTEGRABLE SYSTEMS AND THEIR SCATTERING BEHAVIOR [J].
ADLER, M .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1977, 55 (03) :195-230
[3]  
ADLER M, 1980, PREPRINT
[4]   PROPERTIES OF THE ZEROS OF THE CLASSICAL POLYNOMIALS AND OF THE BESSEL FUNCTIONS [J].
AHMED, S ;
BRUSCHI, M ;
CALOGERO, F ;
OLSHANETSKY, MA ;
PERELOMOV, AM .
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1979, 49 (02) :173-199
[5]   RATIONAL AND ELLIPTIC SOLUTIONS OF KORTEWEG DE-VRIES EQUATION AND A RELATED MANY-BODY PROBLEM [J].
AIRAULT, H ;
MCKEAN, HP ;
MOSER, J .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1977, 30 (01) :95-148
[6]  
Akhiezer N.I., 1970, ELEMENTS THEORY ELLI
[7]  
[Anonymous], 1974, Reports on Mathematical Physics, V5, P121, DOI 10.1016/0034-4877(74)90021-4
[8]  
Araki S., 1962, J MATH OSAKA CITY U, V13, P1
[9]  
Arnold V. I, 1989, MATH METHODS CLASSIC, VSecond, DOI DOI 10.1007/978-1-4757-1693-1
[10]   CONFORMAL PROPERTIES OF A CLASS OF EXACTLY SOLVABLE N-BODY PROBLEMS IN SPACE DIMENSION ONE [J].
BARUCCHI, G ;
REGGE, T .
JOURNAL OF MATHEMATICAL PHYSICS, 1977, 18 (06) :1149-1153