FEEDBACK LINEARIZATION OF ROBOT MANIPULATORS AND RIEMANNIAN CURVATURE

被引:17
作者
BEDROSSIAN, NS
SPONG, MW
机构
[1] UNIV ILLINOIS,COORDINATED SCI LAB,URBANA,IL 61801
[2] CHARLES STARK DRAPER LAB INC,HOUSTON,TX 77058
来源
JOURNAL OF ROBOTIC SYSTEMS | 1995年 / 12卷 / 08期
关键词
D O I
10.1002/rob.4620120804
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
Several authors have noted that if the robot inertia matrix D(q) can be factored as N-T(q)N(q) where N(q) is the Jacobian of a function Q(q), then Q and P = N(q)q define a canonical transformation relative to which the robot dynamics are linear except for gravity terms. In this article, we show that necessary and sufficient condition for the existence of such a factorization is that the Riemannian curvature of the robot inertia matrix D(q) vanish identically. We use this result to generate feedback linearization and approximate feedback linearization control laws that require fewer calculations than the usual method of computed torque. (C) 1995 John Wiley & Sons, Inc.
引用
收藏
页码:541 / 552
页数:12
相关论文
共 10 条
[1]  
[Anonymous], 1978, MATH METHODS CLASSIC, DOI [DOI 10.1007/978-1-4757-1693-1, 10.1007/978-1-4757-1693-1]
[2]  
BEDROSSIAN NS, 1990, MAY P AM CONTR C SAN, P1792
[3]  
BEDROSSIAN NS, 1991, THESIS MIT CAMBRIDGE
[4]  
Boothby W. M., 1975, INTRO DIFFERENTIABLE
[5]  
GU, 1987, MAR P IEEE INT C ROB, P484
[6]   DYNAMIC MODELING AND CONTROL BY UTILIZING AN IMAGINARY ROBOT MODEL [J].
GU, YL ;
LOH, NK .
IEEE JOURNAL OF ROBOTICS AND AUTOMATION, 1988, 4 (05) :532-540
[7]  
Koditschek D. E., 1985, Proceedings of the 24th IEEE Conference on Decision and Control (Cat. No.85CH2245-9), P1
[8]  
LEVICIVITA, 1976, ABSOLUTE DIFFERENTIA
[9]  
Spong M. W., 2008, ROBOT DYNAMICS CONTR
[10]  
SPONG MW, 1992, MAY IEEE INT C ROB A, P554