BIOCHEMICAL-CHARACTERIZATION AND ELECTRON-TRANSFER REACTIONS OF SYM1, A RHODOBACTER-CAPSULATUS REACTION CENTER SYMMETRY MUTANT WHICH AFFECTS THE INITIAL ELECTRON-DONOR

被引:79
作者
TAGUCHI, AKW
STOCKER, JW
ALDEN, RG
CAUSGROVE, TP
PELOQUIN, JM
BOXER, SG
WOODBURY, NW
机构
[1] ARIZONA STATE UNIV,DEPT CHEM & BIOCHEM,TEMPE,AZ 85287
[2] ARIZONA STATE UNIV,CTR STUDY EARLY EVENTS PHOTOSYNTH,TEMPE,AZ 85287
[3] STANFORD UNIV,DEPT CHEM,STANFORD,CA 94305
关键词
D O I
10.1021/bi00157a024
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
A 51 bp section of the Rhodobacter capsulatus photosynthetic reaction center M subunit gene (nucleotides M562-M612 of the pufM structural sequence) encoding amino acids M187-M203 was replaced by the homologous region of the L subunit gene. This resulted in the symmetrization of much of the amino acid environment of the reaction center initial electron donor, P. This is the first in a series of large-scale symmetry mutations and is referred to as sym1. The sym1 mutant was able to grow photosynthetically, indicating that reaction center function was largely intact. Isolated reaction centers showed an approximately 10-nm blue shift in the Q(Y) band of P. The standard free energy change between P* and P+Bph(A)- determined from analysis of the long-lived fluorescence from quinone-reduced reaction centers decreased from about -120 meV in the wild-type to about -75 meV in the sym1 mutant. A 65-70% quantum yield of electron transfer from P* to P+Q(A)- was observed, most of the yield loss occurring between P* and P+Bph(A)-. The decay of the stimulated emission from P* was about 3-fold slower in this mutant than in the wild-type. Time-resolved spectral analysis of the charge-separated intermediates formed in sym1 reaction centers indicated that the major product was P+Bph(A)-. A model-dependent analysis of the observed rates and electron-transfer yields gave the following microscopic rate constants for sym1 reaction centers (wild-type values under the same conditions are given in parentheses): [GRAPHICS] Analysis of the sym1 mutant, mutants near P made by other groups, and interspecies variation of amino acids in the vicinity of P suggests that the protein asymmetry in the environment of the initial electron donor is important for optimizing the rate and yield of electron transfer, but is not strictly required for overall reaction center function.
引用
收藏
页码:10345 / 10355
页数:11
相关论文
共 48 条
[1]   STRUCTURE OF THE REACTION CENTER FROM RHODOBACTER-SPHAEROIDES R-26 - THE COFACTORS .1. [J].
ALLEN, JP ;
FEHER, G ;
YEATES, TO ;
KOMIYA, H ;
REES, DC .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1987, 84 (16) :5730-5734
[2]   ON THE MECHANISM OF THE PRIMARY CHARGE SEPARATION IN BACTERIAL PHOTOSYNTHESIS [J].
BIXON, M ;
JORTNER, J ;
MICHELBEYERLE, ME .
BIOCHIMICA ET BIOPHYSICA ACTA, 1991, 1056 (03) :301-315
[3]  
Breton J., 1990, REACTION CTR PHOTOSY, P293
[4]   INFLUENCE OF AN AMINO-ACID RESIDUE ON THE OPTICAL-PROPERTIES AND ELECTRON-TRANSFER DYNAMICS OF A PHOTOSYNTHETIC REACTION CENTER COMPLEX [J].
BYLINA, EJ ;
KIRMAIER, C ;
MCDOWELL, L ;
HOLTEN, D ;
YOUVAN, DC .
NATURE, 1988, 336 (6195) :182-184
[5]  
BYLINA EJ, 1988, ISRAEL J CHEM, V28, P73
[6]   PLASMID PU29, A VEHICLE FOR MUTAGENESIS OF THE PHOTOSYNTHETIC PUF OPERON IN RHODOPSEUDOMONAS-CAPSULATA [J].
BYLINA, EJ ;
ISMAIL, S ;
YOUVAN, DC .
PLASMID, 1986, 16 (03) :175-181
[7]   INITIAL ELECTRON-TRANSFER IN PHOTOSYNTHETIC REACTION CENTERS OF RHODOBACTER-CAPSULATUS MUTANTS [J].
CHAN, CK ;
CHEN, LXQ ;
DIMAGNO, TJ ;
HANSON, DK ;
NANCE, SL ;
SCHIFFER, M ;
NORRIS, JR ;
FLEMING, GR .
CHEMICAL PHYSICS LETTERS, 1991, 176 (3-4) :366-372
[8]   STRUCTURE OF THE MEMBRANE-BOUND PROTEIN PHOTOSYNTHETIC REACTION CENTER FROM RHODOBACTER-SPHAEROIDES [J].
CHANG, CH ;
ELKABBANI, O ;
TIEDE, D ;
NORRIS, J ;
SCHIFFER, M .
BIOCHEMISTRY, 1991, 30 (22) :5352-5360
[9]   X-RAY STRUCTURE-ANALYSIS OF A MEMBRANE-PROTEIN COMPLEX - ELECTRON-DENSITY MAP AT 3A RESOLUTION AND A MODEL OF THE CHROMOPHORES OF THE PHOTOSYNTHETIC REACTION CENTER FROM RHODOPSEUDOMONAS-VIRIDIS [J].
DEISENHOFER, J ;
EPP, O ;
MIKI, K ;
HUBER, R ;
MICHEL, H .
JOURNAL OF MOLECULAR BIOLOGY, 1984, 180 (02) :385-398
[10]  
DU M, 1992, IN PRESS P NATL ACAD