BAYESIAN-ANALYSIS .2. SIGNAL-DETECTION AND MODEL SELECTION

被引:93
作者
BRETTHORST, GL
机构
[1] Department ofChemistry, Washington University, St. Louis, MO 63130-4899
来源
JOURNAL OF MAGNETIC RESONANCE | 1990年 / 88卷 / 03期
基金
美国国家卫生研究院;
关键词
D O I
10.1016/0022-2364(90)90288-K
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
In the preceding. paper, Bayesian analysis was applied to the parameter estimation problem, given quadrature NMR data. Here Bayesian analysis is extended to the problem of selecting the model which is most probable in view of the data and all the prior information. In addition to the analytic calculation, two examples are given. The first example demonstrates how to use Bayesian probability theory to detect small signals in noise. The second example uses Bayesian probability theory to compute the probability of the number of decaying exponentials in simulated T1 data. The Bayesian answer to this question is essentially a microcosm of the scientific method and a quantitative statement of Ockham's razor: theorize about possible models, compare these to experiment, and select the simplest model that "best" fits the data. © 1990.
引用
收藏
页码:552 / 570
页数:19
相关论文
共 8 条
[1]  
[Anonymous], MAXIMUM ENTROPY BAYE
[2]   BAYESIAN-ANALYSIS .1. PARAMETER-ESTIMATION USING QUADRATURE NMR MODELS [J].
BRETTHORST, GL .
JOURNAL OF MAGNETIC RESONANCE, 1990, 88 (03) :533-551
[3]   BAYESIAN-ANALYSIS .3. APPLICATIONS TO NMR SIGNAL-DETECTION, MODEL SELECTION, AND PARAMETER-ESTIMATION [J].
BRETTHORST, GL .
JOURNAL OF MAGNETIC RESONANCE, 1990, 88 (03) :571-595
[4]  
BRETTHORST GL, 1988, LECTURE NOTES STATIS, V48
[5]   PRIOR PROBABILITIES [J].
JAYNES, ET .
IEEE TRANSACTIONS ON SYSTEMS SCIENCE AND CYBERNETICS, 1968, SSC4 (03) :227-&
[6]  
JAYNES ET, 1979, JASA SEP, P740
[7]  
Jeffreys H., 1983, OXFORD CLASSIC TEXTS, V3
[8]  
ZELLNER A, 1980, BAYESIAN STATISTICS