OPTIMAL SLOPE SELECTION VIA EXPANDERS

被引:27
作者
KATZ, MJ
SHARIR, M
机构
[1] TEL AVIV UNIV, SCH MATH SCI, DEPT COMP SCI, IL-69978 TEL AVIV, ISRAEL
[2] NYU, COURANT INST MATH SCI, NEW YORK, NY 10012 USA
基金
美国国家科学基金会;
关键词
COMPUTATIONAL GEOMETRY; ALGORITHMS; DESIGN OF ALGORITHMS;
D O I
10.1016/0020-0190(93)90234-Z
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Given n points in the plane and an integer k, the slope selection problem is to find the pair of points whose connecting line has the kth smallest slope. (In dual setting, given n lines in the plane, we want to find the vertex of their arrangement with the kth smallest x-coordinate.) Cole et al. have given an O(n log n) solution (which is optimal), using the parametric searching technique of Megiddo. We obtain another optimal (deterministic) solution that does not depend on parametric searching and uses expander graphs instead. Our solution is somewhat simpler than that of [6] and has a more explicit geometric interpretation.
引用
收藏
页码:115 / 122
页数:8
相关论文
共 15 条
[1]   SORTING IN C LOG N PARALLEL STEPS [J].
AJTAI, M ;
KOMLOS, J ;
SZEMEREDI, E .
COMBINATORICA, 1983, 3 (01) :1-19
[2]  
AJTAI M, 1992, 24TH P ACM S THEOR C, P327
[3]  
Alon N., 1992, PROBABILISTIC METHOD
[4]  
[Anonymous], 1987, EATCS MONOGRAPHS THE
[5]  
CHAZELLE B, 1992, 8TH P ACM S COMP GEO, P120
[6]   AN OPTIMAL-TIME ALGORITHM FOR SLOPE SELECTION [J].
COLE, R ;
SALOWE, JS ;
STEIGER, WL ;
SZEMEREDI, E .
SIAM JOURNAL ON COMPUTING, 1989, 18 (04) :792-810
[7]   SLOWING DOWN SORTING NETWORKS TO OBTAIN FASTER SORTING ALGORITHMS [J].
COLE, R .
JOURNAL OF THE ACM, 1987, 34 (01) :200-208
[8]   A RANDOMIZED ALGORITHM FOR SLOPE SELECTION [J].
Dillencourt, Michael B. ;
Mount, David M. ;
Netanyahu, Nathan S. .
INTERNATIONAL JOURNAL OF COMPUTATIONAL GEOMETRY & APPLICATIONS, 1992, 2 (01) :1-27
[9]  
KATZ M, 1993, 9TH P ANN ACM S COMP, P198
[10]   RAMANUJAN GRAPHS [J].
LUBOTZKY, A ;
PHILLIPS, R ;
SARNAK, P .
COMBINATORICA, 1988, 8 (03) :261-277