PROOF OF EXISTENCE OF BREATHERS FOR TIME-REVERSIBLE OR HAMILTONIAN NETWORKS OF WEAKLY COUPLED OSCILLATORS

被引:770
作者
MACKAY, RS [1 ]
AUBRY, S [1 ]
机构
[1] CENS,LAB LEON BRILLOUIN,F-91191 GIF SUR YVETTE,FRANCE
关键词
D O I
10.1088/0951-7715/7/6/006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Existence of 'breathers', that is, time-periodic, spatially localized solutions, is proved for a broad range of time-reversible or Hamiltonian networks of weakly coupled oscillators. Some of their properties are discussed, some generalizations suggested, and several open questions raised.
引用
收藏
页码:1623 / 1643
页数:21
相关论文
共 47 条
[1]  
ABLOWITZ MJ, 1974, STUD APPL MATH, V53, P249
[2]   PERTURBATION-THEORY FOR PERIODIC-ORBITS IN A CLASS OF INFINITE DIMENSIONAL HAMILTONIAN-SYSTEMS [J].
ALBANESE, C ;
FROHLICH, J .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1991, 138 (01) :193-205
[3]   PERIODIC-SOLUTIONS OF SOME INFINITE-DIMENSIONAL HAMILTONIAN-SYSTEMS ASSOCIATED WITH NON-LINEAR PARTIAL DIFFERENCE-EQUATIONS .1. [J].
ALBANESE, C ;
FROHLICH, J .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1988, 116 (03) :475-502
[4]   PERIODIC-SOLUTIONS OF SOME INFINITE-DIMENSIONAL HAMILTONIAN-SYSTEMS ASSOCIATED WITH NON-LINEAR PARTIAL DIFFERENCE-EQUATIONS .2. [J].
ALBANESE, C ;
FROHLICH, J ;
SPENCER, T .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1988, 119 (04) :677-699
[5]   EQUIVALENCE OF UNIFORM HYPERBOLICITY FOR SYMPLECTIC TWIST MAPS AND PHONON GAP FOR FRENKEL-KONTOROVA MODELS [J].
AUBRY, S ;
MACKAY, RS ;
BAESENS, C .
PHYSICA D, 1992, 56 (2-3) :123-134
[6]   CHAOTIC TRAJECTORIES IN THE STANDARD MAP - THE CONCEPT OF ANTIINTEGRABILITY [J].
AUBRY, S ;
ABRAMOVICI, G .
PHYSICA D-NONLINEAR PHENOMENA, 1990, 43 (2-3) :199-219
[7]   CHAOTIC POLARONIC AND BIPOLARONIC STATES IN THE ADIABATIC HOLSTEIN MODEL [J].
AUBRY, S ;
ABRAMOVICI, G ;
RAIMBAULT, JL .
JOURNAL OF STATISTICAL PHYSICS, 1992, 67 (3-4) :675-780
[8]   IMPROVED PROOF OF EXISTENCE OF CHAOTIC POLARONIC AND BIPOLARONIC STATES FOR THE ADIABATIC HOLSTEIN MODEL AND GENERALIZATIONS [J].
BAESENS, C ;
MACKAY, RS .
NONLINEARITY, 1994, 7 (01) :59-84
[9]  
BAESENS C, 1994, UNPUB HOLSTEIN MODEL
[10]   EXPONENTIAL STABILITY OF STATES CLOSE TO RESONANCE IN INFINITE-DIMENSIONAL HAMILTONIAN-SYSTEMS [J].
BAMBUSI, D ;
GIORGILLI, A .
JOURNAL OF STATISTICAL PHYSICS, 1993, 71 (3-4) :569-606