MAXIMIZING TRAVELING SALESMAN PROBLEM FOR SPECIAL MATRICES

被引:6
作者
BLOKH, D
GUTIN, G
机构
[1] TEL AVIV UNIV,SCH MATH,IL-69978 TEL AVIV,ISRAEL
[2] BEN GURION UNIV NEGEV,DEPT IND ENGN & MANAGEMENT,IL-84105 BEER SHEVA,ISRAEL
[3] ODENSE UNIV,DEPT MATH & COMP SCI,DK-5230 ODENSE,DENMARK
关键词
D O I
10.1016/0166-218X(94)00074-N
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the maximizing travelling salesman problem (MTSP) for two special classes of n x n matrices with non-negative entries, namely, matrices from M(n) and M(n, alpha) (alpha greater than or equal to 3) defined as follows. An n x n matrix W = [w(ij)] epsilon M(n) if w(ij) = 0 for all i,j such that /i-j/not equal 1. An n x n matrix W = [w(ij)] epsilon M(n, alpha) if min(/i-j/=1) w(ij) greater than or equal to alpha max(/i-j/<not equal >1) w(ij). We describe an O(n)-algorithm solving exactly the MTSP for matrices from M(n) and show that this algorithm provides an approximate solution of the MTSP for matrices from M(n, alpha) for alpha greater than or equal to 3 with a relative error of at most n/(2 alpha(n - 1)). It is proved that the MTSP is NP-hard for matrices from M(n, alpha) for every fixed positive alpha.
引用
收藏
页码:83 / 86
页数:4
相关论文
共 6 条
[1]  
[Anonymous], 1979, COMPUTERS INTRACTABI
[2]  
BLOKH DA, 1989, AUTOMAT REM CONTR+, V50, P672
[3]  
BLOKH DA, 1985, SIBERIAN J MAT, V26, P190
[4]   ANALYSIS OF APPROXIMATIONS FOR FINDING A MAXIMUM WEIGHT HAMILTONIAN CIRCUIT [J].
FISHER, ML ;
NEMHAUSER, GL ;
WOLSEY, LA .
OPERATIONS RESEARCH, 1979, 27 (04) :799-809
[5]  
Korte B., 1978, ANN DISCRETE MATH, V2, P65, DOI [DOI 10.1016/S0167-5060(08)70322-4, 10.1016/S0167-5060(08)70322-4]
[6]  
Kovalev M. M, 1987, MATROIDS DISCRETE OP