A PHOTOPHYSICAL MODEL FOR DIPHENYLHEXATRIENE FLUORESCENCE DECAY IN SOLVENTS AND IN PHOSPHOLIPID-VESICLES

被引:65
作者
PARASASSI, T
DE STASIO, G
RUSCH, RM
GRATTON, E
机构
[1] UNIV ILLINOIS, DEPT PHYS, FLUORESCENCE DYNAM LAB, URBANA, IL 61801 USA
[2] CNR, IST MED SPERIMENTALE, I-00137 ROME, ITALY
[3] CNR, IST STRUTTURA MAT, I-00044 FRASCATI, ITALY
关键词
D O I
10.1016/S0006-3495(91)82240-8
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
The fluorescence decay of 1,6-diphenyl-1,3,5-hexatriene (DPH) in pure solvents and in phospholipid vesicles has been measured using frequency domain fluorometry. Data analysis uses a model with two energetically close excited states. The model explains the high quantum yield and the double exponential decay of DPH observed in some pure solvents and in phospholipid vesicles. This model assumes that after excitation to a first excited state, there is a rapid interconversion to a lower excited state and that most of the emission occurs from this state. The interconversion rates between the two excited states determine the average lifetime. For DPH in solvents, we find that the interconversion rates are solvent and temperature dependent. For DPH in phospholipid vesicles, we find that the back reaction rate from excited state 2 to excited state 1 (R12) is what determines the fluorescence properties. The phospholipid phase transition affects only this back reaction rate. The model was analyzed globally for a range of solvents, temperatures and vesicle composition. Of the six parameters of the model, only two, the interconversion rates between the two excited states, varied in all different samples examined. For DPH in phospholipid vesicles, there is an additional feature of the model, which is related to the apparent distribution of the rate R12. Significantly better fits were obtained using a continuous lorentzian distribution of interconversion rates. The resulting lifetime distribution was asymmetric and showed a definite narrowing above the phase transition.
引用
收藏
页码:466 / 475
页数:10
相关论文
共 29 条
  • [1] FLUORESCENCE LIFETIME DISTRIBUTIONS IN PROTEINS
    ALCALA, JR
    GRATTON, E
    PRENDERGAST, FG
    [J]. BIOPHYSICAL JOURNAL, 1987, 51 (04) : 597 - 604
  • [2] MEMBRANE STRUCTURAL DOMAINS - RESOLUTION LIMITS USING DIPHENYLHEXATRIENE FLUORESCENCE DECAY
    BARROW, DA
    LENTZ, BR
    [J]. BIOPHYSICAL JOURNAL, 1985, 48 (02) : 221 - 234
  • [3] Beddard GS., 1981, FLUORESCENT PROBES
  • [4] BEECHEM JM, 1988, P SPIE INT SOC OPT E, V909, P70
  • [5] THE ORIGIN OF FLUORESCENCE FROM TRANS TRANS DIPHENYLBUTADIENE
    BIRCH, DJS
    IMHOF, RE
    [J]. CHEMICAL PHYSICS LETTERS, 1982, 88 (02) : 243 - 247
  • [6] FLUORESCENCE OF DIPHENYL-POLYENES AND RETINOL-POLYENES
    BIRKS, JB
    BIRCH, DJS
    [J]. CHEMICAL PHYSICS LETTERS, 1975, 31 (03) : 608 - 610
  • [7] BLECHNER SL, 1989, B AM PHYS SOC, V34, P464
  • [8] CHEN LA, 1977, J BIOL CHEM, V252, P2163
  • [9] PHOTOPHYSICAL PROPERTIES OF DPH DERIVATIVES
    CUNDALL, RB
    JOHNSON, I
    JONES, MW
    THOMAS, EW
    MUNRO, IH
    [J]. CHEMICAL PHYSICS LETTERS, 1979, 64 (01) : 39 - 42
  • [10] DALE RE, 1977, J BIOL CHEM, V252, P7500