A MODIFIED CHEBYSHEV PSEUDOSPECTRAL METHOD WITH AN O(N-1) TIME STEP RESTRICTION

被引:207
作者
KOSLOFF, D [1 ]
TALEZER, H
机构
[1] TEL AVIV UNIV,RAYMOND & BEVERLY SACKLER FAC EXACT SCI,IL-69978 TEL AVIV,ISRAEL
[2] TEL AVIV UNIV,RAYMOND & BEVERLY SACKLER FAC EXACT SCI,SCH MATH SCI,IL-69978 TEL AVIV,ISRAEL
关键词
D O I
10.1006/jcph.1993.1044
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The extreme eigenvalues of the Chebyshev pseudospectral differentiation operator are O(N2), where N is the number of grid points. As a result of this, the allowable time step in an explicit time marching algorithm is O(N−2) which, in many cases, is much below the time step dictated by the physics of the PDE. In this paper we introduce a new differentiation operator whose eigenvalues are O (N) and the allowable time step is O (N−1). The new algorithm is based on interpolating at the zeroes of a parameter dependent, nonperiodic trigonometric function. The properties of the new algorithm are similar to those of the Fourier method but in addition it provides highly accurate solution for nonperiodic boundary value problems. © 1993 by Academic Press, Inc.
引用
收藏
页码:457 / 469
页数:13
相关论文
共 14 条
[1]  
BAYLISS A, 1987, ICASE8767 NASA LANG
[2]  
BAYLISS A, 1986, B AM SEISMOL SOC, V6, P1115
[3]  
Canuto C., 1987, SPECTRAL METHODS FLU
[4]  
David G., 1977, NUMERICAL ANAL SPECT
[5]  
Dubiner M., 1987, Journal of Scientific Computing, V2, P3, DOI 10.1007/BF01061510
[6]  
GOTTLIEB D, 1983, ICASE172241 NASA LAN
[7]   ABSORBING BOUNDARIES FOR WAVE-PROPAGATION PROBLEMS [J].
KOSLOFF, R ;
KOSLOFF, D .
JOURNAL OF COMPUTATIONAL PHYSICS, 1986, 63 (02) :363-376
[8]  
Markushevich A., 1977, THEORY FUNCTIONS COM
[9]   GLOBAL PROPERTIES OF PSEUDOSPECTRAL METHODS [J].
SOLOMONOFF, A ;
TURKEL, E .
JOURNAL OF COMPUTATIONAL PHYSICS, 1989, 81 (02) :239-276
[10]   AN ACCURATE SCHEME FOR SEISMIC FORWARD MODELING [J].
TALEZER, H ;
KOSLOFF, D ;
KOREN, Z .
GEOPHYSICAL PROSPECTING, 1987, 35 (05) :479-490