A GENERAL DESCENT FRAMEWORK FOR THE MONOTONE VARIATIONAL INEQUALITY PROBLEM

被引:61
作者
WU, JH
FLORIAN, M
MARCOTTE, P
机构
[1] Centre de recherche sur les transports, Université de Montréal, Succursale, Montréal, H3C 3J7, Qué.
关键词
VARIATIONAL INEQUALITIES; DESCENT METHODS; OPTIMIZATION;
D O I
10.1007/BF01582152
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We present a framework for descent algorithms that solve the monotone variational inequality problem VIP(v) which consists in finding a solution v* is-an-element-of OMEGA(v) satisfying s(v*)T(v - v* ) greater-than-or-equal-to 0, for all v is-an-element-of OMEGA(v). This unified framework includes, as special cases, some well known iterative methods and equivalent optimization formulations. A descent method is developed for an equivalent general optimization formulation and a proof of its convergence is given. Based on this unified logarithmic framework, we show that a variant of the descent method where each subproblem is only solved approximately is globally convergent under certain conditions.
引用
收藏
页码:281 / 300
页数:20
相关论文
共 39 条
[1]  
Auslender A, 1976, OPTIMISATION METHODE
[2]  
BERTSEKAS DP, 1982, MATH PROGRAM STUD, V17, P139
[3]  
BERTSEKAS DP, 1973, SIAM J CONTROL, V11, P637, DOI 10.1137/0311049
[4]   GENERALIZED GRADIENTS AND APPLICATIONS [J].
CLARKE, FH .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 205 (APR) :247-262
[5]   AN ITERATIVE SCHEME FOR VARIATIONAL-INEQUALITIES [J].
DAFERMOS, S .
MATHEMATICAL PROGRAMMING, 1983, 26 (01) :40-47
[6]   TRAFFIC EQUILIBRIUM AND VARIATIONAL-INEQUALITIES [J].
DAFERMOS, S .
TRANSPORTATION SCIENCE, 1980, 14 (01) :42-54
[7]   THEORY OF MAX-MIN WITH APPLICATIONS [J].
DANSKIN, JM .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1966, 14 (04) :641-&
[8]   CONVEX QUADRATIC-PROGRAMMING WITH ONE CONSTRAINT AND BOUNDED VARIABLES [J].
DUSSAULT, JP ;
FERLAND, JA ;
LEMAIRE, B .
MATHEMATICAL PROGRAMMING, 1986, 36 (01) :90-104
[9]  
FLORIAN M, 1986, MATH PROGRAM STUD, V26, P167, DOI 10.1007/BFb0121092
[10]  
FLORIAN M, 1982, TRANSPORTATION RES B, V16, P447