SOME REMARKABLE DEGENERATIONS OF QUANTUM GROUPS

被引:36
作者
DECONCINI, C
KAC, VG
PROCESI, C
机构
[1] MIT,DEPT MATH,CAMBRIDGE,MA 02139
[2] UNIV ROMA LA SAPIENZA,DIPARTIMENTO MATEMAT,ROME,ITALY
关键词
D O I
10.1007/BF02099768
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We show that an irreducible representation of a quantized enveloping algebra U(epsilon) at a l(th) root of 1 has maximal dimension (= l(N)) if the corresponding symplectic leaf has maximal dimension (= 2N). The method of the proof consists of a construction of a sequence of degenerations of U(epsilon), the last one being a q-commutative algebra U(epsilon)(2N). This allows us to reduce many problems concerning U(epsilon) to that concerning U(epsilon)(2N).
引用
收藏
页码:405 / 427
页数:23
相关论文
共 14 条
[1]  
[Anonymous], 1966, I HAUTES ETUDES SCI, DOI DOI 10.1007/BF02684801
[2]   ON AZUMAYA ALGEBRAS AND FINITE DIMENSIONAL REPRESENTATIONS OF RINGS [J].
ARTIN, M .
JOURNAL OF ALGEBRA, 1969, 11 (04) :532-&
[3]  
BOURBAKI N, 1980, ALGEBRE, pCHR10
[4]  
De Concini C., 1992, J AM MATH SOC, V5, P151, DOI DOI 10.2307/2152754
[5]  
DECONCINI C, 1990, PROG MATH, V92, P471
[6]  
Kac V., 1971, FUNCT ANAL APPL+, V5, P28
[7]   ALGEBRAS OF FUNCTIONS ON COMPACT QUANTUM GROUPS, SCHUBERT CELLS AND QUANTUM TORI [J].
LEVENDORSKII, S ;
SOIBELMAN, Y .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1991, 139 (01) :141-170
[8]  
LUSZTIG G, 1990, GEOMETRIAE DEDICATA, V35, P89
[9]  
Procesi, 1973, PURE APPL MATH, V17
[10]   A FORMAL INVERSE TO THE CAYLEY-HAMILTON THEOREM [J].
PROCESI, C .
JOURNAL OF ALGEBRA, 1987, 107 (01) :63-74