GEODESIC CONGRUENCES AND INHOMOGENEOUS HEISENBERG-FERROMAGNET

被引:11
作者
SYM, A [1 ]
WESSELIUS, W [1 ]
机构
[1] TWENTE UNIV TECHNOL,DEPT APPL MATH,7500 AE ENSCHEDE,NETHERLANDS
关键词
D O I
10.1016/0375-9601(87)90332-X
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
引用
收藏
页码:183 / 186
页数:4
相关论文
共 12 条
[1]  
BALAKRISHNAN R, 1982, J PHYS C SOLID STATE, V15, P1305
[2]   INVERSE SPECTRAL TRANSFORM ANALYSIS OF A NONLINEAR SCHRODINGER-EQUATION WITH CHI-DEPENDENT COEFFICIENTS [J].
BALAKRISHNAN, R .
PHYSICA D-NONLINEAR PHENOMENA, 1985, 16 (03) :405-413
[3]  
BIANCHI L, 1922, LEZIONI GEOMETRIA DI
[4]   EXACT SOLUTION VIA SPECTRAL TRANSFORM OF A GENERALIZATION WITH LINEARLY X-DEPENDENT COEFFICIENTS OF NON-LINEAR SCHRODINGER EQUATION [J].
CALOGERO, F ;
DEGASPERIS, A .
LETTERE AL NUOVO CIMENTO, 1978, 22 (10) :420-424
[5]  
CIESLINSKI J, IN PRESS PHYS REV LE
[6]  
do Carmo M, 2016, DIFFERENTIAL GEOMETR
[7]  
KAGAN VF, 1947, PRINCIPLES THEORY SU
[8]  
KAUP D, 1986, INS58 CLARKS U PREPR
[9]   GEOMETRY OF GENERALIZED NON-LINEAR SCHRODINGER AND HEISENBERG FERROMAGNETIC SPIN EQUATIONS WITH LINEARLY CHI-DEPENDENT COEFFICIENTS [J].
LAKSHMANAN, M ;
BULLOUGH, RK .
PHYSICS LETTERS A, 1980, 80 (04) :287-292
[10]  
Sym A., 1985, Geometric Aspects of the Einstein Equations and Integrable Systems. Proceedings of the Sixth Scheveningen Conference, P154