SINGULAR INTEGRAL-OPERATORS WITH INTEGRAL EIGENVALUES AND POLYNOMIAL EIGENFUNCTIONS

被引:4
作者
CALOGERO, F [1 ]
机构
[1] NATL INST NUCL PHYS,ROME,ITALY
来源
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS | 1979年 / 51卷 / 01期
关键词
D O I
10.1007/BF02743692
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The singular integral operator A defined by the formula[InlineEquation not available: see fulltext.] is investigated. In particular it is shown that, if and only if a(x)=1-x 2)1/2[1+α/(1-x)+β/(1+x)], the eigenfunctions of A are polynomials (of degree n=0, 1, 2, 3 ...) and the corresponding eigenvalues are just the nonnegative integers n. Some other related results are also reported, including certain neat integral relationships satisfied by the Tchebichef polynomials of the second kind. © 1979 Società Italiana di Fisica.
引用
收藏
页码:1 / 14
页数:14
相关论文
共 12 条
[1]  
Abramowitz M, 1955, HDB MATH FUNCTIONS
[2]  
BRUSCHI M, 1978, LETT NUOVO CIMENTO, V24, P509
[3]  
CALOGERO F, 1978, LETT NUOVO CIMENTO, V23, P650, DOI 10.1007/BF02772774
[4]  
CALOGERO F, UNPUBLISHED
[5]  
Erdelyi A., 1954, TABLES INTEGRAL TRAN, V2
[6]  
Erdelyi A., 1953, HIGHER TRANSCENDENTA, VII
[7]  
Gradshteyn I. S., 1980, TABLES OF INTEGRALS
[8]  
Muskhelishvili N.I., 1953, SINGULAR INTEGRAL EQ
[9]  
MYSKIS AD, 1975, ADV MATH ENGINEERS, pCH7
[10]  
PERELOMOV AM, 1978, ANN I H POINCARE A, V28, P407