ERROR-BOUNDS FOR RANK 1 LATTICE QUADRATURE-RULES MODULO COMPOSITES

被引:11
作者
DISNEY, S
机构
[1] School of Mathematics, University of New South Wales, Sydney, 2033, NSW
来源
MONATSHEFTE FUR MATHEMATIK | 1990年 / 110卷 / 02期
关键词
D O I
10.1007/BF01302778
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Improved estimates are established regarding the accuracy which can be achieved by a suitable choice of generator in a single-generator lattice quadrature rule (as used in the "method of good lattice points") in the general case where m, the number of quadrature points, is not necessarily prime. The result obtained for the general case is asymptotically the same as the best currently-known result for the prime case. However, it is also shown that when these rules are applied to some customary test functions the mean error (over different rules with the same number of points) can be arbitrarily large compared to the corresponding mean value for rules with a comparable but prime value of m. These mean values are of interest in relation to computerised searches for good generators. © 1990 Springer-Verlag.
引用
收藏
页码:89 / 100
页数:12
相关论文
共 9 条
[1]   TABLES OF GOOD LATTICES IN 4 AND 5 DIMENSIONS [J].
BOURDEAU, M ;
PITRE, A .
NUMERISCHE MATHEMATIK, 1985, 47 (01) :39-43
[2]  
DISNEY S, INPRESS ERROR BOUNDS
[3]  
HUA LK, 1981, APPLICATIONS NUMBER
[4]   TABLE OF GOOD LATTICE POINTS IN 3 DIMENSIONS [J].
KEDEM, G ;
ZAREMBA, SK .
NUMERISCHE MATHEMATIK, 1974, 23 (02) :175-180
[5]   QUASI-MONTE CARLO METHODS AND PSEUDO-RANDOM NUMBERS [J].
NIEDERREITER, H .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1978, 84 (06) :957-1041
[6]   EXISTENCE OF GOOD LATTICE POINTS IN THE SENSE OF HLAWKA [J].
NIEDERREITER, H .
MONATSHEFTE FUR MATHEMATIK, 1978, 86 (03) :203-219
[7]  
NIEDERREITER H, 1988, NUMERICAL INTEGRATIO, V3, P157
[8]  
SALTYKOV A. I., 1963, ZH VYCH MAT MAT FIZ, V3, P181
[9]  
[No title captured]